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Corrigé de l’épreuve C - filière MP

Partie I

1. L’application P 7−→ P (θ) est un morphisme d’anneau de Q[X ] dans C : son noyau Iθ est donc un idéal de
Q[X ]. Comme Q[X ] est un anneau principal (Q est un corps commutatif), cet idéal est principal et il existe
un polynôme Π ∈ Q[X ] tel que Iθ = ΠQ[X ]. Enfin, θ étant algébrique sur Q, Iθ n’est pas réduit à {0} et Π
est non nul : en notant Πθ le quotient de Π par son coefficient dominant, nous avons toujours Iθ = Πθ Q[X ]
avec Πθ ∈ Q[X ] unitaire. Les polynômes unitaires de Q[X ] annulant θ sont donc les polynômes de la forme
P Πθ avec P ∈ Q[X ] unitaire : Πθ est ainsi l’unique polynôme de Q[X ] de degré minimal annulant θ.

2. Il suffit de suivre l’indication (sans faire de preuve par l’absurde) : soit p un nombre premier. Comme les
ak sont premiers dans leur ensemble, il existe un entier m minimal tel que p ne divise par am. De même, il
existe un entier q minimal tel que p ne divise pas bq. Nous avons alors :

cm+q =

(
m−1∑

i=0

aibm+q−i

)

+ ambq +





q−1
∑

j=0

am+q−jbj





• p divise
∑m−1

i=0 aibm+q−i car il divise chaque ai,

• de même, p divise
∑q−1

j=0 am+q−jbj car il divise chaque bj ,

• p est premier et ne divise ni am, ni bq, il ne divise donc pas apbq,

donc p ne divise par cm+q. Nous avons ainsi montré que les coefficients de P Q n’ont pas de diviseur premier
commun : ils sont premiers dans leur ensemble et P Q est primitif.

3. Il existe P ∈ Z[X ] unitaire tel que P ∈ Iθ. On peut alors écrire P = Q Πθ avec Q ∈ Q[X ]. Mais tout
polynôme de Q[X ] s’écrit comme le produit d’un rationnel par un polynôme primitif. Nous pouvons donc
écrire :

Q =
a

b
Q1, Πθ =

c

d
Π1

avec Q1, Π1 ∈ Z[X ] primitifs, a, b, c, d ∈ Z∗. Cela donne :

bd P = ab Q1Π1

Comme Q1Π1 est primitif, ab est le p.g.c.d. des coefficients du polynôme entier ab Q1Π1. D’autre part, P est
également primitif (son coefficient dominant vaut 1), donc bd est le p.g.c.d. des coefficients de bdP : on en
déduit que bd = ab, puis que P = Q1 Π1. Comme ces trois polynômes sont à coefficients entiers et comme
P est normalisé, ceci impose aux coefficients dominants de Q1 et Π1 d’être égaux à 1 ou −1. Nous obtenons
donc Π1 = Πθ ou Π1 = −Πθ : dans les deux cas, Πθ ∈ Z[X ].

4. Si θ est un nombre de Pisot, θ est également racine de Πθ (car Πθ est un polynôme réel). Comme |θ| = |θ| ≥ 1,
la propriété ii) prouve que θ = θ : les nombres de Pisot sont donc tous réels.



5. Nous avons, en notant ρ = max |αi| :

0 ≤ sin2(πθn) = sin2

(

π

k∑

i=0

αn
i

)

≤

(

π

k∑

i=0

αn
i

)2

≤ π2

(
k∑

i=0

|αi|
n

)2

= O(ρ2n)

Comme 0 ≤ ρ < 1, les théorèmes de comparaison des séries à termes positifs permettent d’affirmer que la
série de terme général sin2(πθn) est convergente.

Partie 2

1. Nous pouvons écrire P =

+∞∑

n=0

pnXn et Q =

+∞∑

n=0

qnXn avec pn = 0 et qn = 0 à partir d’un certain rang. Alors,

par produit de Cauchy :

∀z ∈ D(0, R),

+∞∑

n=0

pnzn =

(
+∞∑

n=0

cnzn

)

×

(
+∞∑

n=0

qnzn

)

=

+∞∑

n=0

(
n∑

k=0

qkcn−k

)

zn.

Par unicité du développement en série entière, nous obtenons :

∀ n ∈ N, pn =

n∑

k=0

qkcn−k.

En particulier :

∀n ≥ max (deg(P ) + 1, deg(Q)) , 0 = pn =

n∑

k=0

qkcn−k =

deg(Q)
∑

k=0

qkcn−k.

En notant p = deg(Q), (β0, β1, . . . , βp) = (qp, . . . , q1, q0) et n0 = max (deg(P ) + 1, deg(Q)) − deg(Q) , nous
avons donc :

∀n ≥ n0, 0 =

p
∑

k=0

βkcn+k.

2. Posons Q(X) = β0Xp + β1Xp−1 + · · · + βp : Q est un polynôme non nul car les βi sont non tous nuls. Le

produit de Cauchy de f(z) et de Q(z), valable pour |z| < R, est de la forme
∑+∞

n=0 pnzn avec pn nul à partir
d’un certain rang : il existe donc P ∈ C[X ] tel que Q(z)f(z) = P (z) pour tout z ∈ D(0, R) : f coïncide
donc, en tout point de D(0, R) où Q ne s’annule pas, avec la fraction rationnelle P/Q, ce qui est la définition
donnée d’une fraction rationnelle.

3. Notons Lm
j la j-ème ligne du déterminant ∆m (on numérote les lignes à partir de l’indice 0). En reprenant

les notations précédentes, dès que m ≥ n0 + p, nous avons β0Lm
m−p + β1Lm

m−p+1 + · · · + βpLm
m = 0. Les βi

étant non tous nuls, les lignes de ∆m sont liées et ∆m = 0.

4.(a) ∆p est nulle, donc il existe une relation de liaison non triviale entre les lignes de ∆p :

β0(c0 c1 · · · cp) + β1(c1 c2 · · · cp+1) + · · · + βp(cp cp+1 · · · c2p) = (0 0 · · · 0).

2



Comme ∆p−1 est non nul, βp est non nul. Quitte à diviser par βp, nous pouvons donc supposer que βp = 1 :
nous obtenons exactement les p + 1 relations demandées.

4.(b) Dans ∆p+1, ajoutons à ligne Lp+1
p+1 la combinaison linéaire β0Lp+1

1 +β1Lp+1
2 + · · ·+βp−1Lp+1

p . Nous obtenons :

∆p+1 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

c0 c1 · · · cp−1 cp cp+1

c1 c2 · · · cp cp+1 cp+2

...
...

...
...

...

cp−1 cp · · · c2p−2 c2p−1 c2p

cp cp+1 · · · c2p−1 c2p c2p+1

0 0 · · · 0 C2p+1 C2p+2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Ajoutons ensuite à l’avant dernière ligne la combinaison linéaire β0Lp+1
0 + β1Lp+1

1 + · · · + βp−1Lp+1
p−1 :

∆p+1 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

c0 c1 · · · cp−1 cp cp+1

c1 c2 · · · cp cp+1 cp+2

...
...

...
...

...

cp−1 cp · · · c2p−2 c2p−1 c2p

0 0 · · · 0 0 C2p+1

0 0 · · · 0 C2p+1 C2p+2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

En développant par rapport à l’avant dernière ligne, puis par rapport à la dernière ligne, nous obtenons :

∆p+1 = (−1)p+2+p+1C2p+1 × (−1)p+1+p+1C2p+1 ∆p−1 = −∆p−1(C2p+1)2.

4.(c) Pour m > p, notons Pm la propriété : ∀ j ≤ m − 1, Cj+p = 0.

• Pp+1 est vérifiée d’après le a)

• soit m > p et supposons que Pm est vérifiée. On calcule alors ∆m en multipliant la matrice associée à
∆m à gauche par la matrice de déterminant 1 :




















1 0 0 · · · · · · · · · 0 0

0 1 0 0
...

. . .
. . .

...

0 · · · 0 1
. . .

...

β0 β1 · · · βp−1 1
. . .

...

0
. . .

. . .
. . .

. . . 0
...

...
. . . β0 β1 · · · βp−1 1 0

0 · · · 0 β0 β1 · · · βp−1 1



















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Cela donne, en remarquant que Cp = Cp+1 = · · · = Cm−1+p = 0 :

∆m =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

c0 c1 . . . cp−1 cp . . . cm

c1 c2 . . . cp cp+1 . . . cm+1

...
...

...

cp−1 cp . . . c2p−2 c2p−1 . . . cm+p−1

Cp Cp+1 . . . C2p−1 C2p . . . Cm+p

Cp+1 Cp+2 . . . C2p C2p+1 . . . Cm+p+1

...
...

...
...

...

Cm Cm+1 . . . Cm−1+p Cm+p . . . C2m

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣

A B
0 C

∣
∣
∣
∣

= det(A) × det(C)

Nous avons ensuite det(A) = ∆p−1 et C est de taille N = m + 1 − p et de la forme

C =





0 α
. ..

α ∗





avec α = Cm+p. Par développements successifs par rapport aux lignes, on obtient :

det(C) = αN (−1)N+1(−1)N · · · (−1)2 = αN (−1)(N+2)(N+1)/2−1 = αN (−1)N(N−1)/2.

Il y a donc une petite erreur d’énoncé, puisque l’on obtient :

∆m = (−1)(m+1−p)(m−p)/2 ∆p−1 (Cm+p)m+1−p.

Comme ∆p−1 6= 0 et ∆m = 0, on obtient tout de même Cm+p = 0 et Pm+1 est vraie.

4.(d) En posant βp = 1, nous obtenons une famille non nulle (β0, . . . , βp) telle que :

∀ n ≥ 0, β0cn + β1cn+1 + · · · + βpcn+p = 0

ce qui prouve que f est rationnelle d’après 2.

Remarque : nous avons aussi affiné le résultat de la question 1, puisque si f est une fraction rationnelle,
il existe p ∈ N et β0, β1, . . . , βp non tous nuls tels que la relation (0.1) soit vraie pour tout n ≥ 0, et pas
seulement à partir d’un certain rang n0.

5.(a) Posons pk = 0 si k > m et qk = 0 si k > n. Par produit de Cauchy de f par Q, nous obtenons :

∀ k ∈ N, pk =

k∑

i=0

aiqk−i ∈ q0Z + q1Z + · · · + qmZ

Ceci prouve que l’idéal engendré par (q0, q1, . . . , qn) est aussi l’idéal engendré par (q0, q1, · · · , qn, p0, p1, · · · , pm),
c’est à dire Z : les qk sont donc premiers dans leur ensemble.

5.(b) Comme P et Q sont premiers entre eux, le théorème de Bézout (dans l’anneau principal Q[X ]) assure
l’existence de U1 et V1 dans Q[X ] tels que U1P + V1Q = 1. En notant r le p.p.c.m. des dénominateurs des
coefficients des polynômes U1 et V1, nous avons :

r ∈ Z∗, U = rU1 ∈ Z[X ], V = rV1 ∈ Z[X ] et Q(Uf + V ) = r(U1P + V1Q) = r.
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5.(c) Notons (Uf + V )(z) =

+∞∑

k=0

dkzk et supposons (preuve par l’absurde) que r ne divise pas tous les dk. En

notant d le plus grand diviseur commun à r et aux dk, r′ = r/d et d′
k = dk/d, nous avons :

• r′, d′
k ∈ Z ;

• r′ et les d′
k sont premiers dans leur ensemble ;

• r′ = Q(z) ×

+∞∑

k=0

d′
kzk.

Comme |r′| ≥ 2, il possède un diviseur premier p. Il existe alors l ≥ 0 tel que p divise d′
0, . . . , d′

l−1 mais ne
divise par d′

l. D’autre part, les qk étant premiers entre eux dans leur ensemble, il existe également k ≥ 0 tel
que p divise q0, . . . , qk−1 mais ne divise par qk. Par produit de Cauchy, nous avons alors :

k+l∑

i=0

qid
′
k+l−i =

{
r′ si k = l = 0

0 sinon

Dans tous les cas, p divise
∑k+l

i=0 qid
′
k+l−i, ce qui est absurde car p ne divise par qkd′

l mais divise tous les
autres termes de cette somme.

5.(d) En particulier, q0 ×
d0

r
= 1 avec q0,

d0

r
∈ Z, donc q0 = ±1.

Partie 3

1.(a) sin2(λπθn) = sin2(πεn). Comme sin2(λπθn) est un terme général de série convergente, il tend vers 0 quand
n tend vers l’infini. On en déduit que sn = sin(πεn) tend vers 0 quand n tend vers l’infini, ce qui impose
à εn de tendre vers 0 quand n tend vers l’infini (comme −π/2 ≤ εn < π/2, πεn = Arcsinsn). Nous avons
alors :

sin2(λπθn) = sin2(πεn) ∼
+∞

π2ε2
n

et ε2
n est le terme général d’une série convergente, par théorème de comparaison des séries à termes positifs.

Pour n ≥ 1, ηn = εn − θεn−1 et :

0 ≤ η2
n = ε2

n + θ2ε2
n−1 − 2θεnεn−1 ≤ ε2

n + θ2ε2
n−1 + θ(ε2

n + ε2
n−1)

donc la série de terme général η2
n est convergente puisque ce majorant est un terme général de série conver-

gente.

1.(b) Posons An = (ai+j)0≤i,j≤n et notons P la matrice carrée de taille n + 1 :

P =














1 0 . . . . . . 0

−θ 1
. . .

...

0 −θ
. . .

. . .
...

...
. . .

. . . 0

0 . . . 0 −θ 1













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Nous avons :

∆n = det(An) = det(AnP ) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a0 η1 η2 . . . ηn

a1 η2 η3 . . . ηn+1

...
...

...
...

an ηn+1 ηn+2 . . . η2n

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Le lemme d’Hadamard donne ensuite exactement l’inégalité demandée.

1.(c) Nous avons an = λθn + o(1) et λθn tend vers l’infini quand n tend vers l’infini, donc an ∼+∞ λθn. Le
théorème de comparaison des sommes partielles de séries à termes positifs divergentes donne :

n∑

m=0

a2
m ∼

+∞

n∑

m=0

λ2θ2m =
+∞

O(θ2n).

Il existe ainsi une constante positive C telle que

∀ n ∈ N,

n∑

m=0

a2
m ≤ C θ2n.

En notant Rk =

+∞∑

m=k

η2
m pour tout k ∈ N, nous obtenons :

∀ n ∈ N, 0 ≤ ∆2
n ≤ C θ2nR1R2 . . . Rn = C

n∏

m=1

θ2 Rm

Comme θ2 Rm tend vers 0 quand m tend vers l’infini, ce produit tend grossièrement vers 0 quand n tend
vers l’infini et ∆n converge vers 0 quand n tend vers l’infini.

2. L’équivalent de an obtenu à la question précédente prouve que le rayon de convergence de la série entière
associée est égal à 1/θ : il est donc non nul. D’autre part, (∆n)n≥0 est une suite d’entiers qui converge vers
0 : il existe donc un rang n0 tel que ∆n = 0 pour n ≥ n0. La question 4 de la partie 2 prouve donc que
∑+∞

n=0 anzn est une fraction rationnelle. Comme cette série est à coefficients entiers, on obtient le résultat
demandé en appliquant la question 5 de la partie 2.

3. Comme εn tend vers 0 quand n tend vers l’infini, le rayon de convergence R de f est au moins égal à 1. Pour
z ∈ C tel que |z| < θ−1, on a également |z| < R et (en remarquant que les séries introduites sont toutes
convergentes) :

f(z) =

+∞∑

n=0

(λθn − an)zn = λ

+∞∑

n=0

(θz)n −

+∞∑

n=0

anzn =
λ

1 − θz
−

P (z)

Q(z)
.

4. Les fonctions z 7−→ f(z)(1 − θz)Q(z) et z 7−→ λQ(q) + (1 − θz)P (z) sont développables en série entière sur
D(0, 1) et coïncident au voisinage de 0 : elle sont donc égales sur tout le disque ouvert D(0, 1).

En particulier, avec z = θ−1, nous obtenons 0 = λQ(θ−1) donc θ−1 est un zéro de Q de module strictement
inférieur à 1.

Réciproquement, si z0 est un zéro de Q tel que |z0| < 1, nous avons 0 = (1 − θz0)P (z0). Comme P et Q sont
premiers entre eux, X − z0 ne divise par P : on en déduit que P (z0) 6= 0, puis que z0 = θ−1.
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5. Une première méthode utilise le lemme d’Abel : si
∑

n≥0 un est une série convergente, la série entière de
terme général unzn converge normalement sur l’intervalle [0, 1]. En particulier, sa somme est continue sur
[0, 1] et

+∞∑

n=0

unρn −−−−−→
ρ→+∞

+∞∑

n=0

un.

En effet, pour z ∈ D(0, 1), posons ρ = |z|. Nous avons :

|(1 − |z|)f(z)| ≤ (1 − ρ)
+∞∑

n=0

|εn|ρn = |ε0| +
+∞∑

n=1

(|εn| − |εn−1|) ρn.

En posant u0 = |ε0| et un = |εn| − |εn−1| pour n ≥ 1, le lemme s’applique car

n∑

k=0

uk = |εn| −−−−→
n→+∞

0. On en

déduit que (1 − |z|)f(z) tend vers 0 quand |z| tend vers 1−.

Une seconde preuve beaucoup plus rapide m’a été soufflée par Denis Favennec : l’inégalité de Cauchy-Schwarz
donne

0 ≤ (1 − |z|) |f(z)| ≤ (1 − |z|)

(
+∞∑

n=0

ε2
n

)1/2 (+∞∑

n=0

|z|2n

)1/2

=

(
+∞∑

n=0

ε2
n

)1/2(
1 − |z|

1 + |z|

)1/2

−−−−−→
|z|→1−

0.

Supposons que Q possède un zéro z0 de module 1. Pour tout ρ ∈ ]θ−1, 1[, nous avons :

(1 − ρ)f(ρz0)Q(ρz0) =
λ(1 − ρ)Q(ρz0)

1 − θρz0
− P (ρz0)

ce qui donne
0 = −P (z0)

en faisant tendre ρ vers 1 : c’est absurde car P et Q n’ont pas de zéro commun.

6. Posons Q = 1 + q1X + · · · + qpXp avec qp 6= 0 et Π = Xp + q1Xp−1 + · · · + qp. Nous avons :

• Π est un polynôme unitaire de Z[X ] ;

• pour tout z complexe non nul, Π(z) = zpP (z−1), donc θ est le seul zéro de Π n’appartenant pas à
D(0, 1).

On en déduit que θ est un entier algébrique et que Πθ, qui divise Π, a également θ pour seul zéro n’appartenant
pas à D(0, 1) : θ est un nombre de Pisot.

Partie 4

1. Soit u > 0. Comme u θ−k tend vers 0 quand k tend vers l’infini, cos(u θ−k) est strictement positif à partir
d’un certain rang k0. Pour k ≥ k0 :

ln
(
cos(u θ−k)

)
= ln

(

1 −
u2

2θ2k
+ o(θ−2k)

)

=
+∞

O(θ−2k).
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Comme θ−2k est positif et est le terme général d’une série convergente, la série de terme général ln
(
cos(u θ−k)

)

est absolument convergente. On en déduit que

n∏

k=n0

cos(u θ−k) a une limite quand n tend vers l’infini : Γ est

donc définie sur ]0, +∞[.

2. Soit u > 0. On montre facilement par récurrence les égalités :

∀ n ∈ N,
sin(2u)

u
=

sin u
2n

u
2n

n∏

k=0

cos
u

2k

Comme
sin v

v
tend vers 1 quand v tend vers 0, on obtient l’égalité demandée en faisant tendre n vers l’infini.

3.(a) Comme Γ(u) ne tend pas vers 0 quand u tend vers +∞, il existe δ > 0 tel que :

∀A > 0, ∃u ≥ A, |Γ(u)| ≥ δ.

Remarquons que chaque u ≥ π s’écrit d’une unique façon sous la forme u = πλθm avec m ∈ N et λ ∈ [1, θ[.
Ces uniques λ et m seront notés λ(u) et m(u).

Commençons par construire par récurrence des suites (m′
s), (λ′

n) et (u′
s) vérifiant toutes les conditions

demandées exceptée la convergence de la suite λ.

• choisissons u′
0 ≥ π tel que |Γ(u′

0)| ≥ δ et posons λ′
0 = λ(u′

0) et m′
0 = m(u′

0) ;

• soit k ≥ 0 et supposons construites (m′
0, . . . , m′

k) suite strictement croissante d’entiers et (λ′
0, . . . , λ′

k)
suite d’éléments de [1, θ[ telles que :

∀ s ∈ [[0, k]],
∣
∣
∣Γ(πλ′

sθm′

s)
∣
∣
∣ ≥ δ.

Il existe alors u′
k+1 ≥ πθm′

k
+1 tel que

∣
∣Γ(u′

k+1)
∣
∣ ≥ δ. En posant m′

k+1 = m(u′
k+1) et λ′

k+1 = λ(u′
k+1),

nous avons bien m′
k+1 ∈ Z, m′

k+1 > m′
k, λ′

k+1 ∈ [0, θ[ et
∣
∣
∣Γ(πλ′

k+1θm′

k
+1)
∣
∣
∣ ≥ δ.

La suite (λ′
k)k≥0 est une suite réelle bornée, il existe donc ϕ : N −→ N strictement croissante et λ ∈ [1, θ]

tels que λ′
ϕ(k) converge vers λ quand k tend vers l’infini : les suites (λ′

ϕ(s))s≥0 et (m′
ϕ(s))s≥0 vérifient les

conditions demandées.

3.(b) Pour n ≥ ms, nous avons :
∣
∣
∣
∣
∣

n∏

k=0

cos(uθ−k)

∣
∣
∣
∣
∣

=

n∏

k=0

∣
∣cos(uθ−k)

∣
∣

︸ ︷︷ ︸

≤1

≤

ms∏

k=0

∣
∣cos(uθ−k)

∣
∣ = |cos(πλs) cos(πλsθ) . . . cos(πλsθms )|

d’où l’inégalité demandée en faisant tendre n vers l’infini.

Nous en déduisons, en utilisant l’inégalité de convexité 1 − v ≤ − ln v, valable pour pour tout v ∈]0, 1], et les
inégalités obtenues précédemment :

ms∑

q=0

sin2(πλsθq) =

ms∑

q=0

(1 − cos2(πλsθq)) ≤ −

ms∑

q=0

ln
(
cos2(πλsθq)

)
≤ −2 ln |Γ(us)| ≤ ln(1/δ2)
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3.(c) Soit m ≥ 0. Comme ms tend vers +∞, il existe s0 tel que ms ≥ m pour s ≥ s0. On en déduit :

∀ s ≥ 0,

m∑

q=0

sin2(πλsθq) ≤

ms∑

q=0

sin2(πλsθq)

et donc

∀ s ≥ 0,

m∑

q=0

sin2(πλsθq) ≤ ln(1/δ2)

En faisant tendre s vers l’infini, nous obtenons :

m∑

q=0

sin2(πλθq) ≤ ln(1/δ2)

Cette inégalité étant valable pour tout m, nous avons prouvé la convergence de la série de terme général
positif sin2(πλθn), ce qui assure que θ est un nombre de Pisot, car λ ≥ 1 > 0.

4.(a) Supposons qu’il existe m ∈ N∗ et k ∈ N tel que 2θm = 2k + 1. Le polynôme 2Xm − (2k + 1) est alors à
coefficients dans Q et admet θ pour racine : il existe donc Q ∈ Q[X ] tel que

2Xm − (2k + 1) = Πθ Q

Le polynôme 2Xm − (2k + 1) ayant mracines simples de même module et θ étant la seule racine de Πθ de
module |θ|, Πθ admet θ pour unique racine, et cette racine est simple, ce qui impose Πθ = X − θ et θ ∈ Z :
c’est absurde car 2θm est pair et 2k + 1 est impair.

Supposons qu’il existe m ∈ N∗ et k ∈ N tel que 2θ−m = 2k + 1. On reprend la même démonstration avec le
polynôme 2 − (2k + 1)Xm : θ ∈ N, puis 2 = (2k + 1)θm, ce qui impose l’absurdité θ = 2.

4.(b) Le (a) montre que cos2(πθ−m) ne s’annule jamais. Nous pouvons donc écrire :

ln
(
cos2(πθ−m)

)
= 2 ln

∣
∣
∣
∣
1 −

1

2
π2θ−2m + o(θ−2m

∣
∣
∣
∣

∼
+∞

−π2θ−2m

Comme −π2θ−2m est de signe constant et est le terme général d’une série convergente, la série de terme
général ln

(
cos2(πθ−m)

)
converge, ce qui donne exactement le résultat demandé.

4.(c) Nous avons cette fois :
ln
(
cos2(πθm)

)
= ln

(
1 − sin2(πθm)

)
∼

+∞
− sin2(πθm)

et on conclut de la même façon, − sin2(πθm) étant le terme général d’une série convergente.

4.(d) Nous avons, pour tout m ∈ N :

|Γ(πθm)|2 =
+∞∏

k=0

cos2(πθm−k) = A × 1 ×
m∏

k=1

cos2(πθk) −−−−−→
m→+∞

AB > 0

Comme πθm tend vers +∞ quand m tend vers +∞, ceci assure que Γ(u) ne tend pas vers 0 quand u tend
vers +∞.
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