Ecoles Normales Supérieures 2012

Corrigé de I’épreuve C - filiere MP

Partie 1

L’application P —— P(6) est un morphisme d’anneau de Q[X] dans C : son noyau Iy est donc un idéal de
Q[X]. Comme Q[X] est un anneau principal (Q est un corps commutatif), cet idéal est principal et il existe
un polynéme IT € Q[X] tel que Iy = I Q[X]. Enfin, 0 étant algébrique sur Q, Iy n’est pas réduit a {0} et I
est non nul : en notant Iy le quotient de II par son coefficient dominant, nous avons toujours Iy = Iy Q[X]
avec Iy € Q[X] unitaire. Les polynémes unitaires de Q[X] annulant 6 sont donc les polynémes de la forme
P1Iy avec P € Q[X] unitaire : Iy est ainsi 'unique polynéme de Q[X] de degré minimal annulant 6.

Il suffit de suivre I'indication (sans faire de preuve par I’absurde) : soit p un nombre premier. Comme les
ay, sont premiers dans leur ensemble, il existe un entier m minimal tel que p ne divise par a,,. De méme, il
existe un entier ¢ minimal tel que p ne divise pas b,. Nous avons alors :

m—1 qg—1
Cmtq = (Z aiberqi) + ambq + Zaerq,jbj

i=0 j=0
o -1 g
o pdivise Y /" " aibmq—; car il divise chaque a;,
A~ P qg—1 . -
e de méme, p divise Y 7 amq—;b; car il divise chaque by,

e p est premier et ne divise ni a,,, ni by, il ne divise donc pas a,bg,

donc p ne divise par ¢,,+q. Nous avons ainsi montré que les coefficients de PQ) n’ont pas de diviseur premier
commun : ils sont premiers dans leur ensemble et PQ est primitif.

Il existe P € Z[X] unitaire tel que P € Iy. On peut alors écrire P = QIIp avec @ € Q[X]. Mais tout
polynéme de Q[X] s’écrit comme le produit d’un rationnel par un polyndéme primitif. Nous pouvons donc
écrire :

a c
= - Iy = =11
Q b Ql; 6 d 1
avec Q1,11 € Z[X] primitifs, a,b, ¢, d € Z*. Cela donne :
bd P = ab QlHI

Comme @Q111; est primitif, ab est le p.g.c.d. des coefficients du polynéme entier ab @Q1I1;. D’autre part, P est
également primitif (son coefficient dominant vaut 1), donc bd est le p.g.c.d. des coefficients de bdP : on en
déduit que bd = ab, puis que P = @1 II;. Comme ces trois polynomes sont a coefficients entiers et comme
P est normalisé, ceci impose aux coefficients dominants de @ et II; d’étre égaux a 1 ou —1. Nous obtenons
donc IT; =TIy ou IT; = —TIIy : dans les deux cas, IIy € Z[X].

Si 6 est un nombre de Pisot,_? est également racine de Iy (car ITg est un polynome réel). Comme |0 = |6] > 1,
la propriété ii) prouve que 6 = 6 : les nombres de Pisot sont donc tous réels.



4.(a)

Nous avons, en notant p = max || :

k k 2 k 2
0 < sin?(70") = sin? (ﬂZa?) < (ﬂz a?) < (Z |ai|"> = 0(p*™)
i=0 i=0 i=0

Comme 0 < p < 1, les théoremes de comparaison des séries a termes positifs permettent d’affirmer que la
série de terme général sin?(70™) est convergente.

Partie 2
—+o0 —+o0

Nous pouvons écrire P = Z P X" et Q = Z ¢ X" avec p, = 0 et ¢, = 0 & partir d’un certain rang. Alors,
n=0 n=0

par produit de Cauchy :

400 +o00 400 +oo n
Vz € D(0,R), anz" = (Z cnz"> X <Z qnz"> = Z (Z chnk> z".
n=0 0 \k=0

n=0 n=0

Par unicité du développement en série entiére, nous obtenons :
n
VneN, p, = E qkCn—k-
k=0

En particulier :

n deg(Q)
Vn > max (deg(P) +1,deg(Q)), 0 =p, = Z QkCn—k = Z QkCrn—k-
k=0 k=0

En notant p = deg(Q), (6o, B1,---,8p) = (@p,---,q1,90) et np = max (deg(P) + 1,deg(Q)) — deg(Q) , nous

avons donc :

p
Yn > ng, 0= Z BrCnti-
k=0

Posons Q(X) = foX? + /i XP 1+ 4 Bp : Q est un polynéme non nul car les §; sont non tous nuls. Le
produit de Cauchy de f(2) et de Q(z), valable pour |z| < R, est de la forme 3¢ p,,z™ avec p,, nul & partir
d’un certain rang : il existe donc P € C[X] tel que Q(2)f(z) = P(z) pour tout z € D(0,R) : f coincide
donc, en tout point de D(0, R) ol @ ne s’annule pas, avec la fraction rationnelle P/Q, ce qui est la définition
donnée d’une fraction rationnelle.

Notons L7" la j-éme ligne du déterminant A,, (on numérote les lignes a partir de I'indice 0). En reprenant
les notations précédentes, dés que m > ng + p, nous avons BoLy,_, + f1Ly, 0 q + -+ BpLly; = 0. Les j3;
étant non tous nuls, les lignes de A, sont liées et A,,, = 0.

A, est nulle, donc il existe une relation de liaison non triviale entre les lignes de A, :

Bolco cr -+ ¢cp) + Bilcr e -+ py1) + -+ 4 Bplcp cpp1 - c2p) = (00 -+ 0).



Comme A,_; est non nul, 3, est non nul. Quitte a diviser par ,, nous pouvons donc supposer que 3, =1 :
nous obtenons exactement les p + 1 relations demandées.

i ‘1 1 o o 1 1
4.(b) Dans A1, ajoutons a ligne LZL la combinaison linéaire So LY+ + g1 LET 4. -+ Bp—1 LBt Nous obtenons :
Co C1 tee Cp—1 Cp Cp+1
1 €2 T Cp Cp+1 Cp+2
Apsr =
Cp—1 Cp trr Cop—2 Cop—1 C2p
Cp Cp+1 - C2p—1 C2p Cop+1
0 0 s 0 02p+1 02p+2

Ajoutons ensuite a l'avant derniere ligne la combinaison linéaire BOLgH + ﬂlLfH 4+t ﬂpfngi :

Co C1 s Cp—1 Cp Cp+1
&1 C2 - Cp Cp+1 Cp+2
Apy1 =
Cp—1 Cp -+ Cop—2 C2p—1 C2p
o 0 -+ 0 0 Copi1
0 0 e 0 02p+1 02p+2

En développant par rapport a ’avant derniére ligne, puis par rapport a la derniere ligne, nous obtenons :

A10+1 = (*1)p+2+p+102p+1 X (*1)p+1+p+102p+1 Apfl = *Ap71(02p+1)2-

4.(c) Pour m > p, notons P, la propriété : Vj <m —1, Cj4, = 0.
o Py est vérifiée d’apres le a)

e soit m > p et supposons que P, est vérifiée. On calcule alors A,, en multipliant la matrice associée a
A, a gauche par la matrice de déterminant 1 :

0 0
0
0 0 1
Bo B Bp—1 1
0 0
Bo B - Bp1 10
0 0 Bo B - Bpo1 1



4.(d)

5.(a)

5.(b)

Cela donne, en remarquant que Cp, = Cpp1 =+ =Cp_14p =0 :

Co C1 N Cp—1 Cp N Cm
C1 Co e Cp Cp+1 e Cm+41
Cp—1 Cp . Cop—2 Cop—1 . Cm+4p—1 A B
Ay, = = ‘ = det(A) x det(C)
Cp Cps1 . Coypr Coyp oo Coip 0 C
Cp+1 Cp+2 NN Cgp CQerl - Cm+p+1
Cwm Cmi1 o Cm1sp Cmyp .. Com

Nous avons ensuite det(A) = Ap,_; et C est de taille N = m + 1 — p et de la forme

0 o
C = '

@ *
avec & = Cy,4p. Par développements successifs par rapport aux lignes, on obtient :
det(C) = o (~1)N (=N - (1) = o (~1)NFDWNHD/2-1 _ (N (_)N(N-1)/2,
Il y a donc une petite erreur d’énoncé, puisque 1'on obtient :
A, = (fl)(mﬂfp)(mfp)/? Ap 1 (Crgp)™ 7P

Comme Ay,_; # 0 et A, = 0, on obtient tout de méme Cy,qp = 0 et Pppq1 est vraie.

En posant §, = 1, nous obtenons une famille non nulle (5o, ..., 3,) telle que :
Vn >0, Bocp + Bicnt1 + -+ Bpcntp =0
ce qui prouve que f est rationnelle d’apres 2.

Remarque : nous avons aussi affiné le résultat de la question 1, puisque si f est une fraction rationnelle,
il existe p € N et 8o, 51, .., 0, non tous nuls tels que la relation (0.1) soit vraie pour tout n > 0, et pas
seulement a partir d’un certain rang ny.

Posons pr, =0si k> m et g =0 si k > n. Par produit de Cauchy de f par @, nous obtenons :

k
VkeN, p, = ZaiQkfi €Eql+qZ+ -+ qgnZ
i=0
Ceci prouve que 'idéal engendré par (qo, g1, - - - , gn ) est aussi I'idéal engendré par (go, q1, -, Gn, Po, P1,** * » Pm)s
c’est a dire Z : les g sont donc premiers dans leur ensemble.

Comme P et @) sont premiers entre eux, le théoréme de Bézout (dans 'anneau principal Q[X]) assure
lexistence de Uy et V4 dans Q[X] tels que U1 P+ V1@ = 1. En notant r le p.p.c.m. des dénominateurs des
coefficients des polynoémes U; et V7, nous avons :

reZ, U=rU; €Z[X], V=rV1 €Z[X]et QUf+V)=r(U1P+V1Q)=r.



5.(c)

5.(d)

1.(a)

1.(b)

“+o0

Notons (Uf + V)(z) = dezk et supposons (preuve par ’absurde) que r ne divise pas tous les di. En
k=0

notant d le plus grand diviseur commun a r et aux dy, v’ = r/d et dj, = di/d, nous avons :

o ' d, €Z;

o 1’ et les d}, sont premiers dans leur ensemble;

+oo
o ' =Q(2) x Zdﬁczk
k=0

Comme |r/| > 2, il possede un diviseur premier p. Il existe alors [ > 0 tel que p divise dy, ..., d;_; mais ne
divise par d;. D’autre part, les gi étant premiers entre eux dans leur ensemble, il existe également k& > 0 tel
que p divise qq, - . ., qx—1 mais ne divise par qx. Par produit de Cauchy, nous avons alors :

S rosik=1=0

Z iy = .

i=0 0 sinon

. -+l . . e
Dans tous les cas, p divise Ziio qidjy;_;, ce qui est absurde car p ne divise par gyd; mais divise tous les
autres termes de cette somme.

d d
En particulier, gp x =0 =1 avec Qo, =2 e Z, donc qg = *1.
r r

Partie 3

sin?(A\r0") = sin?(7e,,). Comme sin?(A\r6™) est un terme général de série convergente, il tend vers 0 quand
n tend vers l'infini. On en déduit que s, = sin(rwe,) tend vers 0 quand n tend vers linfini, ce qui impose
a &, de tendre vers 0 quand n tend vers Uinfini (comme —7/2 < &,, < w/2, we,, = Arcsins,,). Nous avons
alors :
sin?(A\r0") = sin*(ne,) ~ wie?
+oo
et €2 est le terme général d’une série convergente, par théoréme de comparaison des séries & termes positifs.
Pourn>1,n, =€, —fc,_1 et :
0<n2=e2+0%2 | — 20,6, 1 <2 +0%32_, +0(2+2_))

donc la série de terme général 2 est convergente puisque ce majorant est un terme général de série conver-
gente.

Posons A,, = (a;+;)o<i,j<n €t notons P la matrice carrée de taille n + 1 :

1 0 ... ... 0
-6 1
P=110 -0

0

0 0 -6 1



1.(c)

Nous avons :

aon m 2 . Mn

ai T2 n3 ceo TNntl
A, =det(4,) =det(A,P) =

An  TMn+1 Nn+2 CIE MN2n

Le lemme d’Hadamard donne ensuite exactement 1’inégalité demandée.

Nous avons a, = A" + o(1) et A" tend vers linfini quand n tend vers linfini, donc a, ~jo A". Le
théoréme de comparaison des sommes partielles de séries a termes positifs divergentes donne :

Zn: @ Zn: N = 00",
m=0

m=0

Il existe ainsi une constante positive C' telle que

Vn €N, ZaiﬁC@Q”.

m=0
+oo
En notant Ry = Z 777271 pour tout k£ € N, nous obtenons :
m=k

VneN, 0<A2 <CO"RiRy...R, =C [] 6° R
m=1

Comme 02 R,,, tend vers 0 quand m tend vers l'infini, ce produit tend grossiérement vers 0 quand n tend
vers l'infini et A,, converge vers 0 quand n tend vers I'infini.

L’équivalent de a,, obtenu a la question précédente prouve que le rayon de convergence de la série entiere
associée est égal & 1/6 : il est donc non nul. D’autre part, (Ay),>0 est une suite d’entiers qui converge vers
0 : il existe donc un rang ng tel que A,, = 0 pour n > ny. La question 4 de la partie 2 prouve donc que
Z:z% anz™ est une fraction rationnelle. Comme cette série est a coefficients entiers, on obtient le résultat
demandé en appliquant la question 5 de la partie 2.

Comme ¢, tend vers 0 quand n tend vers I'infini, le rayon de convergence R de f est au moins égal a 1. Pour
z € C tel que |z] < 071, on a également |z| < R et (en remarquant que les séries introduites sont toutes
convergentes) :

+0o0 +o0 too
f(z) = Z(AG” —an)z" = A Z(ez)n - Z an2" = 1 _Aez a SEZ
n=0 n—0 "0

Les fonctions z — f(2)(1 — 02)Q(z) et z —> AQ(q) + (1 — 0z)P(z) sont développables en série entiére sur
D(0,1) et coincident au voisinage de 0 : elle sont donc égales sur tout le disque ouvert D(0, 1).

En particulier, avec z = 671, nous obtenons 0 = AQ(#~1) donc #~! est un zéro de Q de module strictement
inférieur a 1.

Réciproquement, si zg est un zéro de @ tel que |z9| < 1, nous avons 0 = (1 — 0z9) P(2). Comme P et ) sont
premiers entre eux, X — 2o ne divise par P : on en déduit que P(zp) # 0, puis que 2o = 67 1.



Une premiere méthode utilise le lemme d’Abel : si ) -, u, est une série convergente, la série entiere de
terme général wu, 2" converge normalement sur U'intervalle [0, 1]. En particulier, sa somme est continue sur

[0,1] et

—+oo +oo

> Unp" ——— > U
p—r+0o

n=0 =0

En effet, pour z € D(0,1), posons p = |z|. Nous avons :

+oo +oo
(L= 12D () < (L=p) Y leale™ = leol + D (len] = len—1]) o
n=0 n=1

n
En posant ug = |eo| €t u, = |en| — |en—1| pour n > 1, le lemme s’applique car Zuk = |len| —— 0. On en
o n——+oo
déduit que (1 — |z])f(z) tend vers 0 quand |z| tend vers 1~.

Une seconde preuve beaucoup plus rapide m’a été soufflée par Denis Favennec : 'inégalité de Cauchy-Schwarz
donne

+oo 12 /100 1/2 = 12 1—1z| 1z
n=0 n=0

n=0

Supposons que @ posséde un zéro zo de module 1. Pour tout p € ]0~1, 1], nous avons :

A1 = p)Q(pzo0)

(1=p)F(p20)Qp20) = == —5 =

— P(pz0)

ce qui donne

0= —P(Zo)

en faisant tendre p vers 1 : c’est absurde car P et  n’ont pas de zéro commun.

Posons @ =1+ ¢ X + -+ ¢qpXP avec g # 0 et II = XP + QXPt 4. + gp. Nous avons :
e II est un polynome unitaire de Z[X];

e pour tout z complexe non nul, II(z) = 2PP(z7 1), donc 6 est le seul zéro de II n’appartenant pas a
D(0,1).

On en déduit que 6 est un entier algébrique et que Iy, qui divise I, a également 6 pour seul zéro n’appartenant
pas & D(0,1) : 6 est un nombre de Pisot.

Partie 4

Soit u > 0. Comme u 6~* tend vers 0 quand k tend vers l'infini, cos(u6~%) est strictement positif a partir
d’un certain rang ko. Pour k > kg :

In (cos(uf~%)) =In (1 - 2ZW + 0(9_2k)> = o6~2%).



3.(a)

3.(b)

Comme 0~2F est positif et est le terme général d’une série convergente, la série de terme général In (cos(u 9"“))
n

est absolument convergente. On en déduit que H cos(u G_k) a une limite quand n tend vers 'infini : I est
k:no
donc définie sur 0, 4+o0].

Soit w > 0. On montre facilement par récurrence les égalités :

U

sin(2u)  sin g% u
VneN, " = o kl:[OCOSQ—k

muv

S
Comme tend vers 1 quand v tend vers 0, on obtient ’égalité demandée en faisant tendre n vers l'infini.

Comme I'(u) ne tend pas vers 0 quand u tend vers 400, il existe 6 > 0 tel que :

VA >0, Ju> A, [T(u)] >4

Remarquons que chaque u > 7 s’écrit d’une unique fagon sous la forme u = 7 0™ avec m € N et A € [1,0].
Ces uniques A et m seront notés A(u) et m(u).

!/

') vérifiant toutes les conditions

Commencons par construire par récurrence des suites (ml}), (A\),) et (u
demandées exceptée la convergence de la suite \.

e choisissons u{, > 7 tel que |T'(uf)| > & et posons Ay = A(ug) et my = m(uy) ;

e soit k > 0 et supposons construites (mg, ..., m}) suite strictement croissante d’entiers et (Xj,...,A})
suite d’éléments de [1, 6] telles que :

Vs € [0, k], ]r(m;emé) > 6.

Il existe alors uj_; > 70"+ tel que IT(u}y1)| > 6. En posant mj ;= m(uj ) et N, = Muj, ),

nous avons bien mj_, € Z, my_, > mj, A, €10,0] et 1"(71')\%4_19”2“) > 4.

La suite (A},)k>0 est une suite réelle bornée, il existe donc ¢ : N — N strictement croissante et A € [1, 6]
tels que A;(k) converge vers A quand k tend vers l'infini : les suites (A;(S))szo et (mfp(s))szo vérifient les
conditions demandées.

Pour n > mg, nous avons :

H cos(uf ")
k=0

= H ’cos(u9_k)’ < H ’cos(u@‘k)’ = |cos(mAs) cos(mA0) ... cos(mA;0™)]
k=0 k=0

d’ou l'inégalité demandée en faisant tendre n vers 'infini.

Nous en déduisons, en utilisant 'inégalité de convexité 1 — v < — In v, valable pour pour tout v €]0, 1], et les
inégalités obtenues précédemment :

ZsinQ(ﬂ')\seq) = Z(l — cos?(mA07)) < — Zln (cos?(mAs07)) < —21In|[(u,)| < In(1/6%)
q=0 q=0 q=0



3.(c)

4.(a)

4.(b)

4.(c)

4.(d)

Soit m > 0. Comme mg tend vers +o0, il existe sg tel que mg > m pour s > sg. On en déduit :

Vs >0, ZSiDQ(ﬂ')\s@q) < ZsinQ(ﬂ)\seq)
q=0 q=0

et donc .
Vs >0, Zsin2(ﬂ')\89q) <1In(1/6%)
q=0

En faisant tendre s vers l'infini, nous obtenons :

i sin?(7A0?) < In(1/6%)

q=0

Cette inégalité étant valable pour tout m, nous avons prouvé la convergence de la série de terme général
positif sin?(mA0™), ce qui assure que 6 est un nombre de Pisot, car A > 1 > 0.

Supposons qu'il existe m € N* et k € N tel que 20™ = 2k + 1. Le polynéme 2X™ — (2k + 1) est alors a
coefficients dans Q et admet 6 pour racine : il existe donc @ € Q[X] tel que

2X™ — (2k+1) =11y Q

Le polynéme 2X™ — (2k 4 1) ayant mracines simples de méme module et 6 étant la seule racine de Iy de
module |0], IIy admet 6 pour unique racine, et cette racine est simple, ce qui impose Il = X —fet 6 € Z :
c’est absurde car 20™ est pair et 2k 4+ 1 est impair.

Supposons qu’il existe m € N* et k € N tel que 207 = 2k 4+ 1. On reprend la méme démonstration avec le
polynéme 2 — (2k 4+ 1)X™ : § € N, puis 2 = (2k + 1)0™, ce qui impose I’absurdité 6 = 2.

Le (a) montre que cos?(mf~™) ne s’annule jamais. Nous pouvons donc écrire :
1
In (cos®(m0~™)) =2In |1 — =707 > +0(07*"| ~ —7?07*"
2 +oo
29—2m

Comme —7 est de signe constant et est le terme général d’une série convergente, la série de terme
général In (0052(779_7”)) converge, ce qui donne exactement le résultat demandé.

Nous avons cette fois :
In (cos®(70™)) =1In (1 — sin®(70™)) ~ —sin®(70™)

+oo

et on conclut de la méme facon, — sin?(70™) étant le terme général d’une série convergente.

Nous avons, pour tout m € N :

+oo m
ID(w0™)[* = [] cos®(m0™ %) = Ax 1 x [] cos*(w6*) ——— AB >0
k=0

m——+oo
k=1

Comme 7™ tend vers +oco quand m tend vers 400, ceci assure que I'(u) ne tend pas vers 0 quand u tend
vers +00.



