Programme de colles n° 16 : colles du 20/01 au 24/01

Algèbre linéaire : espaces préhilbertiens réels et euclidiens (début)

- Produit scalaire.
 - Exemples simples (sur \mathbb{R}^n , sur $\mathcal{M}_n(\mathbb{R})$ et sur $C^0([a,b],\mathbb{R})$).
 - Inégalité de Cauchy-Schwarz, cas d'égalité; polarisation, identité du parallélogramme.
 - Orthogonalité; théorème de Pythagore.
 - Familles orthogonales et orthonormées; somme directe et supplémentaire orthogonaux.
- Base orthonormée d'un espace euclidien E.
 - Représentation des formes linéaires sur un espace euclidien.
 - Existence de bases orthonormées.
 - Si E est préhilbertien réel et F un sous-espace de dimension finie de E, alors $E = F \oplus F^{\perp}$.
 - Si E est un espace euclidien et F un sous-espace de E, alors $F = (F^{\perp})^{\perp}$.
 - Théorème de la base orthonormée incomplète.
- Projection orthogonale p_F sur un sous-espace F de dimension finie.
 - Expression de p_F dans une base orthonormée.
 - Distance au sous-espace F.
 - Symétrie orthogonale associée.
 - Procédé d'orthonormalisation de Gram-Schmidt.
- Adjoint d'un endomorphisme d'un espace euclidien.
 - Existence et unicité.
 - Linéarité, propriété d'involution.
 - Adjoint de $v \circ u$.
 - Écriture matricielle de l'adjoint dans une base orthonormée.

<u>∧</u> En dehors des deux premières questions de cours spécifiques, pas de séries entières ni d'intégrales à paramètres. Pas d'isométries vectorielles ni d'endomorphismes autoadjoints non plus cette semaine.

Prévisions pour la semaine 17 : isométries vectorielles, endomorphismes autoadjoints.

Questions de cours spécifiques pour cette semaine (les démonstrations doivent être connues) :

• Exercice traité en cours (séries entières).

Montrer qu'il existe une unique fonction f, développable en série entière sur \mathbb{R} , solution du problème de Cauchy suivant :

$$\left\{ \begin{array}{l} y'' + xy = x^2 + x + 2 \\ y(0) = 1, \ y'(0) = 1. \end{array} \right.$$

• Fonction Gamma (banque CCINP 29).

On pose : $\forall x \in]0, +\infty[$ et $\forall t \in]0, +\infty[$, $f(x,t) = e^{-t}t^{x-1}$.

1. Démontrer que, pour tout $x \in]0, +\infty[$, la fonction $t \mapsto f(x,t)$ est intégrable sur $]0, +\infty[$.

On pose alors

$$\forall x \in]0, +\infty[, \quad \Gamma(x) = \int_0^{+\infty} e^{-t} t^{x-1} dt.$$

- 2. Pour tout $x \in]0, +\infty[$, exprimer $\Gamma(x+1)$ en fonction de $\Gamma(x)$.
- 3. Démontrer que Γ est de classe C^1 sur $]0,+\infty[$ et exprimer $\Gamma'(x)$ sous forme d'intégrale.
- Inégalité de Cauchy-Schwarz pour le produit scalaire; cas d'égalité.
- Si E est un espace préhilbertien réel et F un sous-espace de dimension finie, alors $E = F \bigoplus F^{\perp}$.
- Calcul de la distance euclidienne de la matrice

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

au sous-espace vectoriel $\mathcal{S}_3(\mathbb{R})$ des matrices symétriques, en utilisant la décomposition classique $\mathcal{M}_3(\mathbb{R}) = \mathcal{S}_3(\mathbb{R}) \bigoplus \mathcal{A}_3(\mathbb{R})$ (les étudiant(e)s doivent être capables de montrer cette somme directe orthogonale).

• Théorème de représentation des formes linéaires sur un espace euclidien.