Programme de colles $n^{\circ} 1$: colles du 8/09 au 12/09

Les exercices de cette première semaine porteront sur les nombres complexes (avec trigonométrie éventuellement), les idéaux dans \mathbb{Z} et les espaces vectoriels.

Chapitre introductif

- Ensembles, applications, familles.
- Relation d'équivalence, relation d'ordre, ensemble \mathbb{N} .
- Dénombrabilité : définition, exemples de \mathbb{N}^* , de \mathbb{N}^2 et de \mathbb{Q} .
- Rappels sur les groupes, anneaux et corps.
- Idéal d'un anneau commutatif. Idéaux de Z. Lien avec la divisibilité.
- Rappels sur \mathbb{R} et \mathbb{C} ; racines n-èmes de l'unité.

Algèbre linéaire : espaces vectoriels et applications linéaires

- Espaces vectoriels sur \mathbb{R} ou \mathbb{C} (\mathbb{R}^n , \mathbb{C}^n , espaces de suites et de fonctions); algèbres et sous-algèbres.
- Sous-espaces vectoriels, sous-espaces vectoriels engendrés par une partie A: Vect(A);
- Familles libres et génératrices, bases;
- Cas de la dimension finie n: dimension d'un espace vectoriel, conditions sur le cardinal d'une famille libre et sur celui d'une famille génératrice;
- Somme et somme directe d'un nombre fini de sous-espaces vectoriels (programme de deuxième année).
- Formule de Grassmann : $\dim(E+F) = \dim(E) + \dim(F) \dim(E \cap F)$.
- Rang d'une famille de vecteurs; invariance du rang par opérations élémentaires sur les vecteurs;
- Base adaptée à une décomposition en somme directe;
- Applications linéaires : définition, caractérisation de l'injectivité avec le noyau, de la surjectivité avec l'image;
 - Une application linéaire est bijective si et seulement si elle envoie une base sur une base;
 - Existence et unicité d'une application linéaire définie sur une base;
 - Formule du rang et conséquence : en dimension finie, injectivité, surjectivité et bijectivité sont équivalentes.
- Polynômes interpolateurs de Lagrange : existence et unicité.
- Endomorphismes particuliers : homothéties, projecteurs, symétries ; décomposition de l'espace en somme directe : $E = \ker p \oplus \operatorname{Im} p$ pour un projecteur, $E = \ker(s I_E) \oplus \ker(s + I_E)$ pour une symétrie.
- Formes linéaires et hyperplans.

Prévisions pour la semaine 2 : matrices, polynômes.

Questions de cours spécifiques du programme 1 (les démonstrations doivent être connues) :

ullet (Exercice de cours) On définit la différence symétrique Δ de deux ensembles A et B par la relation

$$A\Delta B = (A \setminus B) \cup (B \setminus A).$$

Montrer que l'on a : $A\Delta B = (A \cup B) \setminus (A \cap B)$.

- Calcul de $\sum_{k=0}^{n} \cos(kx+y)$ et $\sum_{k=0}^{n} \sin(kx+y)$ pour $x, y \in \mathbb{R}$ et $n \in \mathbb{N}$.
- Définition d'un idéal I d'un anneau commutatif A. Détermination des idéaux de l'anneau $(\mathbb{Z}, +, \times)$.
- Le noyau d'un morphisme d'anneaux $f: A_1 \to A_2$ (avec A_1 anneau commutatif) est un idéal de l'anneau A_1 .
- Résolution de l'équation $z^n = a$ dans \mathbb{C} , pour $a \in \mathbb{C}^*$.
- Pour $E_1, ..., E_p$ des sous-espaces vectoriels d'un espace vectoriel E,

$$Vect(E_1 \cup E_2 \cdots \cup E_n) = E_1 + E_2 + \cdots + E_n.$$