Programme de colles n° 3 : colles du 22/09 au 26/09

Polynômes à coefficients dans $\mathbb{K} = \mathbb{R}$ ou \mathbb{C}

- Arithmétique dans $\mathbb{K}[X]$: divisibilité, PGCD (définition en termes d'idéaux), identités et théorème de Bézout, lemme de Gauss.
- Polynômes d'endomorphismes et de matrices;
 - si $f \in \mathcal{L}(E)$, $(PQ)(f) = P(f) \circ Q(f)$ et $(\lambda P + \mu Q)(f) = \lambda P(f) + \mu Q(f)$, et résultat similaire pour les matrices.
- Polynôme minimal d'un endomorphisme (resp. d'une matrice).
 - Définition, exemples, base de $\mathbb{K}[f] = \{P(f) / P \in \mathbb{K}[X]\}.$

Déterminant et systèmes linéaires (rappels de MPSI et polynôme caractéristique)

- Groupe symétrique et applications n-linéaires.
 - Transpositions, décomposition d'une permutation en produit de transpositions; définition d'un cycle;
 - Signature d'une permutation : c'est un morphisme de groupes, qui vaut -1 pour toute transposition.
- Applications multilinéaires, des formes n-linéaires et formes n-linéaires alternées.
 - Antisymétrisation d'une forme n-linéaire;
- L'espace vectoriel des formes n-linéaires alternées sur un ev de dimension finie E est de dimension 1.
- Déterminant.
 - déterminant d'une famille de vecteurs : caractérisation des bases et des familles liées ;
 - déterminant d'un endomorphisme; cas des automorphismes;
 - déterminant d'une matrice carrée; égalité du déterminant d'une matrice et de sa transposée;
 - déterminant d'une matrice triangulaire supérieure par blocs (4 blocs); calcul du déterminant des matrices triangulaires.
- Développement d'un déterminant :
 - Mineurs, cofacteurs, développement par rapport à une ligne ou une colonne;
- comatrice; $A(Com(A))^{\top} = (Com(A))^{\top}A = \det(A)I_n$; cas n = 2. Application à l'orientation de \mathbb{R}^2 ou \mathbb{R}^3 ; bases directes et indirectes.
- Polynôme caractéristique d'une matrice, d'un endomorphisme (définitions); théorème de Cayley-Hamilton (démonstration dans le cas des matrices 2×2);
- Déterminant de Vandermonde : calcul, application à l'existence et à l'unicité du polynôme d'interpolation de Lagrange.
- Etude générale des systèmes linéaires : systèmes homogènes, rang, résolution numérique par le pivot de Gauss.
- Systèmes de Cramer, formules de Cramer.
- Inversion d'une matrice carrée.

L'utilisation du polynôme caractéristique en réduction n'est pas au programme de cette semaine.

Prévisions pour la semaine 4 : début de la réduction.

Questions de cours spécifiques pour la semaine 3 (sauf mention contraire, les démonstrations doivent être connues):

- Énoncer toute définition, tout théorème ou toute propriété du cours (sans démonstration).
- Définition du PGCD de deux polynômes en termes d'idéaux. Propriété : le PGCD de deux polynômes P_1 et P_2 non simultanément nuls est l'unique polynôme unitaire de degré maximal qui divise P_1 et P_2 .
- Soit Δ un polynôme unitaire de $\mathbb{K}[X]$ et P_1 et P_2 deux polynômes de $\mathbb{K}[X]$, qui ne sont pas tous les deux nuls. Alors:

$$\Delta = PGCD(P_1, P_2) \iff \left(\Delta | P_1 \text{ et } \Delta | P_2 \text{ et } \exists A, B \in \mathbb{K}[X] \ / \ A \cdot P_1 + B \cdot P_2 = \Delta\right).$$

• Pour tout $f \in \mathcal{L}(E)$, $\lambda, \mu \in \mathbb{K}$ et $P, Q \in \mathbb{K}[X]$,

$$(PQ)(f) = P(f) \circ Q(f), \quad (\lambda P + \mu Q)(f) = \lambda P(f) + \mu Q(f) \quad \text{et} \quad P(f) \circ Q(f) = Q(f) \circ P(f).$$

- Montrer que si $P \in \mathbb{K}[X]$ et $f \in \mathcal{L}(E)$ (E espace vectoriel de dimension finie), P(f) est inversible dans $\mathcal{L}(E)$ si et seulement si P est premier avec le polynôme minimal π_f .
- Définition et expression du polynôme caractéristique d'une matrice $A \in \mathcal{M}_n(\mathbb{K})$:

$$\chi_A = X^n - (\operatorname{tr} A)X^{n-1} + \dots + (-1)^n \det A$$

(les termes en pointillés ne sont pas à préciser).

Théorème de Cayley-Hamilton lorsque n=2.