Programme de colles n° 7 : colles du 3/11 au 7/11

Espaces (vectoriels) normés

- La partie du programme 6 concernant les espaces vectoriels normés.
- Topologie induite.
- Norme dominée par une autre. Normes équivalentes, traduction en termes de convergence des suites.
- Limite
 - Définition de la limite d'une fonction $f:A\subset E\to F$ en un point adhérent a à A;
 - Opérations sur les limites.
- Relations de négligeabilité et de domination en un point (pour les fonctions).
- Continuité
 - Continuité sur un sous-ensemble A d'un espace normé E.
 - Exemples d'applications continues ; opérations usuelles.
 - Caractérisation séquentielle de la continuité en un point.
 - Espace vectoriel des fonctions continues d'un ensemble A dans un espace normé F.
 - Continuité des applications lipschitziennes.
 - Image réciproque d'un ouvert, d'un fermé par une application continue.
- Compacité
 - Définition par la propriété de Bolzano-Weierstrass.
 - Lien avec les fermés bornés, produit fini de compacts.
 - Compacts de \mathbb{K}^n pour la norme $\|\cdot\|_{\infty}$.
 - Application continue sur un compact; théorème de Heine.
- Espaces normés de dimension finie
 - Equivalence des normes en dimension finie.
 - Caractérisation de la convergence d'une suite par celle des composantes.
 - Théorème de Bolzano-Weierstrass : toute suite bornée d'un espace normé de dimension finie possède une suite extraite convergente.
 - Caractérisation de la continuité d'une fonction par celle des composantes.
 - Continuité des applications linéaires.
 - Toute application linéaire u d'un espace normé E de dimension finie à valeurs dans un espace normé F quelconque est lipschitzienne, donc continue.

Prévisions pour la semaine 8 : connexité par arcs, continuité des applications multilinéaires ; fonctions d'une variable réelle.

Questions de cours spécifiques pour la semaine 7 (les démonstrations doivent être connues) :

• Dans $E = \mathbb{K}^n$, on a, pour tout $x \in \mathbb{K}^n$:

$$N_{\infty}(x) \leqslant N_1(x) \leqslant \sqrt{n}N_2(x) \leqslant nN_{\infty}(x).$$

Dans $E = C^0([a;b];\mathbb{K})$, on a, pour toute function $f \in E$:

$$N_1(f) \leqslant \sqrt{b-a} N_2(f) \leqslant (b-a) N_{\infty}(f).$$

• [D'après Banque CCINP numéro 35]

E et F désignent deux espaces normés. On note $\|\cdot\|_E$ la norme sur E et $\|\cdot\|_F$ la norme sur F. Soient f une application de E dans F et a un point de E. On considère les propositions suivantes :

P1. f est continue en a.

P2. Pour toute suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de E telle que $\lim_{n\to+\infty}x_n=a$, alors $\lim_{n\to+\infty}f(x_n)=f(a)$.

Prouver que les propositions P1 et P2 sont équivalentes.

- [D'après Banque CCINP numéro 13]
 - a) Rappeler, oralement, la définition, par les suites de vecteurs, d'une partie compacte d'un espace vectoriel normé.
 - b) Démontrer qu'une partie compacte d'un espace vectoriel normé est une partie fermée de cet espace.
 - c) Démontrer qu'une partie compacte d'un espace vectoriel normé est une partie bornée de cet espace. *Indication* : on pourra raisonner par l'absurde.
- [D'après Banque CCINP numéro 13]

On se place sur $E = \mathbb{R}[X]$ muni de la norme $\|\cdot\|_1$ définie pour tout polynôme $P = a_0 + a_1X + \cdots + a_nX^n$ de E par : $\|P\|_1 = \sum_{i=0}^n |a_i|$.

- a) Justifier que $S(0,1)=\{P\in\mathbb{R}[X]\ /\ \|P\|_1=1\}$ est une partie fermée et bornée de E.
- b) Calculer $||X^n X^m||_1$ pour m et n entiers naturels distincts. S(0,1) est-elle une partie compacte de E? Justifier.
- [D'après Banque CCINP numéro 36]

Démontrer que si f est une application linéaire de E dans F, alors les propriétés suivantes sont deux à deux équivalentes :

P1. f est continue sur E.

P2. f est continue en 0_E .

P3. $\exists k > 0 \text{ tel que} : \forall x \in E, ||f(x)||_F \leq k ||x||_E.$

• (Exercice de cours)

Pour toute matrice $A = (a_{ij})$ de $\mathcal{M}_n(\mathbb{C})$, on pose $N(A) = \max_{1 \leq i \leq n} \left(\sum_{j=1}^n |a_{i,j}| \right)$.

- a) Montrer que l'application $A \mapsto N(A)$ définit une norme sur $\mathcal{M}_n(\mathbb{C})$.
- b) Montrer que l'on a : $\forall (A, B) \in \mathcal{M}_n(\mathbb{C})^2$, $N(A \cdot B) \leqslant N(A)N(B)$ (i.e. N est une norme sous-multiplicative).