Programme de colles $n^{\circ} 9$: colles du 17/11 au 21/11

Analyse : fonctions vectorielles de la variable réelle

- Dérivabilité; caractérisation à l'aide des fonctions coordonnées.
 - Stabilité par combinaison linéaire, par composition avec une fonction de la variable réelle et à valeurs dans R.
- Composition avec une application linéaire, bilinéaire.
- Inégalité des accroissements finis.
- Fonctions de classe C^k , $k \geq 2$.

Æ

Les formules de Taylor (vectorielles) seront vues lors d'un chapitre ultérieur.

Analyse : séries dans un espace normé de dimension finie (avec rappels de MPSI)

- Généralités : définitions, lien entre suite et série.
- Espace vectoriel des séries convergentes.
- Condition nécessaire de convergence, séries géométriques.
- Séries de nombres réels positifs :
 - caractérisation de la convergence; séries de Riemann;
 - théorèmes de comparaison des séries à termes positifs.
- Séries de nombres réels strictement positifs : règle de d'Alembert.
- Séries alternées :
 - Théorème de convergence quand la valeur absolue du terme général décroît et converge vers 0;
 - Séries alternées de Riemann.
- Convergence absolue :
 - La convergence absolue entraîne la convergence; réciproque fausse.
 - Exemples : exponentielle sur \mathbb{C} , exponentielle matricielle (non approfondie dans ce chapitre).
 - Espace vectoriel des séries absolument convergentes.
 - Comparaison d'une série à une intégrale. Cas particuliers de séries de Bertrand.
 - Formule de Stirling.
 - Sommation des relations de comparaison.

Prévisions pour la semaine 10 : sommabilité, intégration sur un segment.

Questions de cours spécifiques (les démonstrations doivent être connues) :

• Soit $f: I \subset \mathbb{R} \to \mathbb{R}$ une application. Alors :

f est convexe $\iff \{(x,y) \in I \times \mathbb{R}/ y \geqslant f(x)\}$ est un ensemble convexe de \mathbb{R}^2 .

⚠

La convexité ne sera pas abordée en exercice .

- [extrait de Banque CCINP, numéro 6]
 - Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels strictement positifs et l un réel positif strictement inférieur à 1.
 - 1. Démontrer que si $\lim_{n\to +\infty}\frac{u_{n+1}}{u_n}=l,$ alors la série $\sum u_n$ converge.
 - 2. Quelle est la nature de la série $\sum_{n\geq 1} \frac{n!}{n^n}$?
- La convergence absolue entraîne la convergence pour une série de termes à valeurs dans un espace normé de dimension finie.
- Convergence absolue de la série définissant l'exponentielle matricielle : si $A \in \mathcal{M}_p(\mathbb{K})$,

$$\exp(A) = \sum_{n=0}^{+\infty} \frac{A^n}{n!} .$$

• La suite $\left(a_n = \frac{n!e^n}{n^n \sqrt{n}}\right)_{n \in \mathbb{N}^*}$ converge vers une limite $\ell > 0$.