DS-3 (CCINP-e3a) - Barème

Connaissance du cours		
Quantité de questions traitées		
Détail de la rédaction		
Rigueur de la rédaction		
Soin de la rédaction		
Commentaires pertinents		

	CHIMIE 1 : atomistique	élève	prof	max
Q.1	\bullet $[O] = 1s^2 2s^2 2p4$ \bullet Règle de Klechkowsky \bullet énoncé complet			2.5
Q.1	• BONUS si Hund et Pauli cités			
Q.14	$ullet T_k = rac{2\pi}{\sqrt{1+\eta_k}} \sqrt{rac{l}{g_0}} ullet T_k = rac{T_0}{\sqrt{1+\eta_k}}$			1
Q.15	• DL $T_k \simeq T_0 \left(1 - \frac{1}{2}\eta_k\right)$ • $\frac{T_1 - T_2}{T_1 + T_2} \simeq -\frac{1}{4} \left(\eta_1 - \eta_2\right) \simeq -\frac{1}{4}\mathcal{E}_{12}$			1
	• On veut $T_2 - T_1 \simeq \frac{1}{2} \mathcal{E}_{12} T_0 \simeq \frac{1}{2} 10^{-15} T_0$			2.5
Q.16	• On veut un écart d'une période au moins			'
4.10	• Il faut observer environ 10^{15} périodes • impossible			
	• Précision max raisonnable ici : 10^{-3}			ı
~	• PFD à m dans $\mathcal{R}_{bo\hat{i}tier}$ non galiléen • $\overrightarrow{f}_{ie} = -ma\overrightarrow{e}_x$			2
Q.17	$ullet$ $\overrightarrow{f}_{ic} = \overrightarrow{0}$ car $\mathcal{R}_{bo\hat{i}tier}$ en translation par rapport à \mathcal{R}_{sol}			
	$\bullet \ddot{X} + \frac{h}{m}\dot{X} + \omega_0^2 X = -a \text{ avec } \omega_0 = \sqrt{\frac{k}{m}}$			
	• Équation caractéristique $r^2 + \frac{h}{m}r + \omega_0^2 = 0$ (et $\Delta = \left(\frac{h}{m}\right)^2 - 4\omega_0^2$)			$5.5_{(+0.5)}$
	• Distinction des 3 régimes : apériodique, critique et pseudo-périodique			
	• Correspondence respective avec $h > 2m\omega_0$, $h = 2m\omega_0$ et $h < 2m\omega_0$			
	• Pour les 3 régimes, facteurs exponentiels en $e^{-\frac{ht}{2m}}$			
Q.18	• Pour le régime pseudo-périodique $\Omega = \sqrt{\omega_0^2 - \left(\frac{h}{2m}\right)^2}$			
4.1 0				
	• Présence de la constante $-\frac{a}{\omega_0^2}$ • Expressions $X(t)=\dots$ pour les 3 régimes			
	• Tracé du régime pseudo-périodique • Tracé du régime apériodique/critique			
	$\bullet X(t=0) = 0$			
	• Valeur finale $X(t \to \infty) = -\frac{a}{\omega_0^2}$ dont on peut extraire a			
	• BONUS si mention du temps de réponse $\tau = \frac{2m}{h}$			1
Q.19	• $\tau = \frac{2m}{h}$ pour régimes pseudo-périodiques et critiques			1
	$\bullet \ \tau = \frac{1}{\frac{h}{2m} - \sqrt{\left(\frac{h}{2m}\right)^2 - \omega_0^2}}$ pour régime apériodique			
	• $\tau = \frac{1}{\gamma}$ pour $h \leq 2m\omega_0$ ie $\gamma \leq \omega_0$			$2.5_{(+0.5)}$
	$\bullet \ \tau = \frac{1}{\gamma - \sqrt{\gamma^2 - \omega_0^2}} \text{ pour } h \geq 2m\omega_0 \text{ ie } \gamma \geq \omega_0$			
Q.20	• Tracé de l'hyperbole pour $\gamma \leq \omega_0$ • Tracé de la courbe pour $\gamma \geq \omega_0$			
	• BONUS si DL pour $\gamma \gg \omega_0 \Rightarrow \tau \sim \frac{2\gamma}{\omega_0^2} \Rightarrow$ linéaire en γ			
	$ullet$ $ au_{min} = au(\omega_0) = rac{1}{\omega_0}$			
	• $\gamma = \frac{\omega_0}{5} < \omega_0 \Rightarrow \text{ première partie de courbe}$ • $\tau = \frac{1}{\gamma} = 1, 4.10^{-4} \text{ s}$			$1.5_{(+1)}$
	• BONUS si τ suffisamment court pour une manette de jeu			(1-)
Q.21	$\bullet \ X_{\infty} = -\frac{a}{\omega_0^2} \Rightarrow X_{\infty} = 8.4 \ nm$			
	• BONUS si extrêmement faible et pourtant mesurable! (avec capacités)			
Q.22	$\bullet \ddot{X} + \frac{h}{m}\dot{X} + \omega_0^2 X = (\overrightarrow{g}_0 - \overrightarrow{a}) \cdot \overrightarrow{u}$			1(+0.5)
·	• $\ddot{X} + \frac{h}{m}\dot{X} + \omega_0^2 X = (\overrightarrow{g}_0 - \overrightarrow{a}) \cdot \overrightarrow{u}$ • Mesure de $-frac(\overrightarrow{g}_0 - \overrightarrow{a}) \cdot \overrightarrow{u}\omega_0^2$ à l'équilibre			
	\bullet BONUS si mesure de $\pm g_0$ si accéléromètre immobile et vertical			
Q.23	$ullet$ m_G n'intervient pas si accéléromètre horizontal			1
~·=0	$ullet \left(\frac{m_G}{m_I} \overrightarrow{g}_0 - \overrightarrow{a} \right) \cdot \overrightarrow{u}$ au lieu de $(\overrightarrow{g}_0 - \overrightarrow{a}) \cdot \overrightarrow{u}$			

	Problème 2 : Suite	élève	prof	max
0.04	$\bullet \mathcal{R}_G$ centré sur le centre de la Terre, pointant vers 3 étoiles fixes			1
$\mathbf{Q.24}$	$ullet$ \mathcal{R}_G non galiléen car translation non rectiligne uniforme par rapport à \mathcal{R}_K		I	
	• Schéma • $\overrightarrow{F}_{S \to T} = -\mathscr{G} \frac{m_G^{(T)} m_G^{(S)}}{D_2^2} \overrightarrow{e}_r$			2(+0.5)
$\mathbf{Q.25}$				<u> </u>
·	• PFD circulaire $\Rightarrow \overrightarrow{F}_{S \to T} = -m_I^{(T)} D\Omega^2 \vec{e}_r \bullet \Omega = \sqrt{\mathscr{G} \frac{m_G^{(S)}}{D^3} \frac{m_G^{(T)}}{m_I^{(T)}}}$			
	• BONUS si on néglige l'influence de la Lune dans PFD			
Q.26	$\bullet \ \vec{a}_{\mathcal{R}_G/\mathcal{R}_K} = -\Omega^2 \overrightarrow{ST}$			0.5
	• PFD à la Lune dans \mathcal{R}_G non galiléen • $\vec{F}_{T \to L} = -\frac{\mathscr{G}m_G^{(L)}m_G^{(T)}}{TL^3}\overrightarrow{TL}$			3.5
0	• $\vec{F}_{S \to L} = -\frac{\mathscr{G}m_G^{(L)}m_G^{(S)}}{SL^3} \vec{S} \vec{L}$ • $\vec{F}_{ie} = -m_L^{(L)} \vec{a}_{\mathcal{R}_G/\mathcal{R}_K}$			0.0
$\mathbf{Q.27}$				
	• \mathcal{R}_G en translation circulaire par rapport à \mathcal{R}_K • $\vec{F}_{ic} = \vec{0}$			
	$\bullet \ m_I^{(L)} \left(\frac{d\overrightarrow{v_L}}{dt}\right)_{\mathcal{R}_C} = -\frac{\mathscr{G}m_G^{(L)}m_G^{(T)}}{TL^3} \overrightarrow{TL} - \frac{\mathscr{G}m_G^{(L)}m_G^{(S)}}{SL^3} \overrightarrow{SL} + m_I^{(L)} \Omega^2 \overrightarrow{ST}$			
Q.28.a)	• Approximation champ grav. du soleil uniforme au voisinage Terre-Lune			1
Q.20.a)	$\bullet \ m_I^{(L)} \left(\frac{d\overrightarrow{v_L}}{dt} \right)_{\mathcal{R}_C} = -\frac{\mathscr{G}m_G^{(L)} m_G^{(T)}}{TL^3} \overrightarrow{TL} - \frac{\mathscr{G}m_G^{(L)} m_G^{(S)}}{ST^3} \overrightarrow{ST} + m_I^{(L)} \Omega^2 \overrightarrow{ST}$			
	• $\vec{F}_S = m_I^{(L)} \Omega^2 \overrightarrow{ST} - \frac{\mathscr{G}m_G^{(L)}m_G^{(S)}}{ST^3} \overrightarrow{ST}$ • Utilisation de Q.25			
Q.28.b)				2
·	• $\vec{F}_S = \alpha m_I^{(L)} \Omega^2 \mathcal{E}_{T,L} \overrightarrow{ST}$ avec $\alpha = \frac{m_I^{(T)}}{m_I^{(T)}}$ • $\alpha = \frac{1}{1+\eta_T} \simeq 1$			
Q.29	• Principe d'équivalence vérifié $\Rightarrow \mathcal{E}_{T,L} = 0 \Rightarrow \vec{F}_S = \overrightarrow{0}$			0.5
Q.30	• La Lune décrit une ellipse/cercle • Terre = foyer/centre			1
•	$ullet$ PFD à la Lune dans \mathcal{R}'_G non galiléen en rotation par rapport à \mathcal{R}_G galiléen			2.5
Q.31.a)	• Schéma • $\vec{F}_{ie} = -m_I^{(L)} \overrightarrow{\omega_0} \wedge (\overrightarrow{\omega_0} \wedge \overrightarrow{r}) = m_I^{(L)} \omega_0^2 \overrightarrow{r}$ avec $z = 0$			
Q.01. a)	$\bullet \ \vec{F}_{ic} = -2m_I^{(L)} \overrightarrow{\omega_0} \wedge \overrightarrow{\dot{r}}$			
	• $m_I^{(L)} \frac{d^2 \vec{r}}{dt^2} = -\frac{G m_G^{(L)} m_G^{(T)}}{r^3} \vec{r} - m_I^{(L)} \vec{\omega}_0 \wedge (\vec{\omega}_0 \wedge \vec{r}) - 2 m_I^{(L)} \vec{\omega}_0 \wedge \frac{d\vec{r}}{dt}$			
	• Équilibre de la Lune dans $\mathcal{R}'_G \Rightarrow -\frac{Gm_G^{(L)}m_G^{(T)}}{d^3}\vec{r} + m_I^{(L)}\omega_0^2(x\vec{e}_x + y\vec{e}_y) = 0$			0
Q.31.b)				2
Q.31. D)	• Projection sur les trois axes • $d = \left(\frac{\mathscr{G}m_G^{(L)}m_G^{(T)}}{m_I^{(L)}\omega_0^2}\right)^{1/3}$			
	• Eq de la Lune sur un cercle de centre T et de rayon $\sqrt{x^2 + y^2} = d$			
	• $\vec{F}_T = -\frac{\mathscr{G}m_G^{(L)}m_G^{(T)}}{r^3}\vec{r}$ • • $\frac{1}{r^3} = \frac{1}{d^3}\left(1 - \frac{3x}{d}\right)$ • • $F_{Tx} = -m_I^{(L)}\omega_0^2d\left(1 - \frac{2x}{d}\right)$			3
Q.32.a)				3
O 22 b)	• $F_{Ty} = -m_I^{(L)} \omega_0^2 y$ • $F_{Tz} = -m_I^{(L)} \omega_0^2 z$ • Q.31.a) projetée • $\ddot{x} = 3\omega_0^2 x + 2\omega_0 \dot{y}$ • $\ddot{y} = -2\omega_0 \dot{x}$ • $\ddot{z} = -\omega_0^2 z$			2
Q.32.b)	• Q.31.a) projetee • $x = 3\omega_0 x + 2\omega_0 y$ • $y = -2\omega_0 x$ • $z = -\omega_0 z$ • Solutions constantes $\{x = 0, y = cste, z = 0\}$ • $cste = d$			$\frac{2}{1.5}$
Q.32.c)	• Mouvement tangent au cercle précédent dans \mathcal{R}_G			1.0
Q.33.a) Q.33.b)	• Passage du système précédent en complexes			2.5
	• $(3\omega_0^2 + \omega^2)\underline{X} + 2i\omega_0\omega\underline{X} = 0$; $-2i\omega_0\omega\underline{X} + \omega^2\underline{Y} = 0$ et $(\omega^2 - \omega_0^2)\underline{Z} = 0$			
	• Sol. non nulles si dét. nul • $\omega^2(\omega^2 - \omega_0^2)^2 = 0$ • $\omega = 0$ ou $\omega = \pm \omega_0$			
	• Pour $\omega = \omega_0 : \underline{Y} = 2i\underline{X}$			2(+0.5
	• $x(t) = -\frac{a}{2}cos(\omega_0 t)$ et $y(t) = asin(\omega_0 t)$ • ellipse de centre $(T,0)$ • Schéma			
	• BONUS si mouvement qui correspond à une oscillation de la distance Terre-			
0.94 . 5'	Lune			9
$ extbf{Q.34} ightarrow ext{Fin}$	Barème non détaillé pour la fin			?
	Total			48.5(4)

TOTAL		56