Correction - DM22 - Problèmes - Morceaux choisis - Mécanique quantique

1 ENAC - 2017

1. Si $\mathcal{E} < \mathcal{E}_{\mathcal{C}}$, il n'y a pas d'onde transmise donc la particule ne peut se trouver dans un état libre sans le région x>0 que si $\mathcal{E} > \mathcal{E}_0$. Réponse A

Elle peut être réfléchie si $\mathcal{E} > \mathcal{E}_0$ Réponse B

En 0, la fonction d'onde et sa dérive sont continues.

2. Si $\mathcal{E}>\mathcal{E}_0$, Le premier terme en $\exp(ik_2x)$ correspond à une onde plane allant de gauche vers la droite: il représente donc l'onde transmise.

Par contre, le second terme représente une onde venant de +l'infini allant vers la gauche.

Comme nous n'avons pas de particule qui provient dans ce sens, nous poserons $A_2^l = 0$

L'équation de Schrödinger conduit à $\frac{d^2\psi}{dx^2} + k_2^2\psi = 0$ avec $k_2^2 = \frac{2m(E - E_0)}{\hbar^2}$ soit

$$k_2 = \frac{\sqrt{2m(E - E_0)}}{\hbar}$$
 Réponse A et B

3 . Conditions aux limites: La fonction $\psi(x)$ et sa première dérivée $\psi'(x)$

doivent être continues en x= 0. $A_2^l = A_1^l + B_1^l$ et $A_2^l k_2 = (A_1^l - B_1^l) k_1$ alors $A_2^l = A_1^l \frac{2k_1}{k_1 + k_2}$ et

$$B_1^l = A_1^l \frac{k_1 - k_2}{k_1 + k_2}$$
 : $\underline{r} = \frac{k_1 - k_2}{k_1 + k_2}$: Réponse C

4. Dans le milieu II, la solution est une onde évanescente : $\underline{A}_2 = 0$: Réponse C

5. Dans le milieu I, $c_1 = ik_1 = i\frac{\sqrt{2mE}}{\hbar}$ et dans le milieu II, $c_2 = \frac{\sqrt{2m(E_0 - E)}}{\hbar}$

Réponses A et D

6. Dans ce cas, T=0 et R=1 : Réponse B et C

7. Comme
$$c_2 = \frac{\sqrt{2m(E_0 - E)}}{h} = \frac{1}{\delta} = 2 \times 3,14 \frac{\sqrt{2 \times 10^{-30} \times 1,6.10^{-19}}}{6,6 \times 10^{-34}} : \boxed{\delta = 2.10^{10} m}$$

Réponse C

2 Centrale - MP - 2016

II Confinement d'objets quantiques

II.A Confinement dans une boite quantique

II.A.1. (a) Confinement au voisinage d'un minimum de potentiel : oscillateur harmonique $E_m = \frac{1}{2}m\,\dot{x}^2 + \frac{1}{2}m\omega^2x^2 = \text{cte d'où en dérivant par rapport au temps } \ddot{x} + \omega^2x = 0 \,; \text{ conversion d'énergie cinétique en énergie potentielle et réciproquement.}$

Circuit électrique LC : $E = \frac{q^2}{2C} + \frac{1}{2}L\,i^2 = \text{cte}$ où $i = \frac{dq}{dt}$; $\omega = \frac{1}{\sqrt{LC}}$; mêmes calculs (analogie méca-élec); conversion d'énergie électrique stockée dans le condensateur en énergie magnétique stockée dans la bobine et réciproquement.

(b) $i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \left(\frac{\partial^2 \psi}{\partial x^2}\right) + V(x)\psi(x,t)$ où $\rho = |\psi|^2$ est la densité de probabilité de présence, c'est

à dire que la probabilité dP de se trouver entre x et x + dx à t est $dP = |\psi(x,t)|^2 dx$.

- (c) $g(t) = e^{-\frac{iEt}{\hbar}}$ où E est l'énergie de cet état. Cet état est stationnaire car la densité de probabilité de présence $\rho = |\psi|^2$ est bien indépendante du temps.
- (d) C'est un état lié et la fonction d'onde doit être normalisée : $\int_{-\infty}^{+\infty} |\psi|^2(x) dx = 1.$
- (e) $\langle x \rangle = \int_{-\infty}^{+\infty} x |\psi|^2(x) dx = 0$ (imparité de la fonction ou changement de variable $x \to -x$). Avec le formulaire on a directement l'extension caractéristique $\Delta x = \frac{1}{\sqrt{2}} \sqrt{\frac{\hbar}{m^* \omega}} = 3,0 \, \text{nm}$.
- (f) $\Delta x \, \Delta p_x \geq \frac{\hbar}{2} \Rightarrow \Delta p_x \geq \sqrt{\frac{m^*\hbar\omega}{2}}$. Et $\langle p_x \rangle = 0$ donc $\langle p_x^2 \rangle = (\Delta p_x)^2 \geq \frac{m^*\hbar\omega}{2}$ d'où $E = \left\langle \frac{p_x^2}{2m} + \frac{1}{2}m^*\omega^2x^2 \right\rangle \geq \frac{\hbar\omega}{2}$. Pour l'OHQ le minimum est atteint et $E_0 = \frac{\hbar\omega}{2}$.

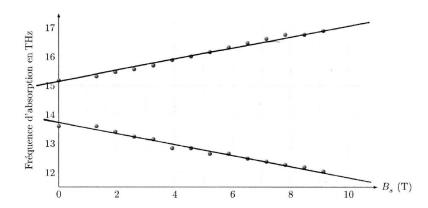
Contrairement au cas classique cette énergie minimale n'est pas nulle mais strictement positive. Cette énergie minimale est directement liée au confinement au travers de ω et de la relation d'incertitude de Heisenberg (c.f. calcul ci-dessus).

- (g) On a toujours $g(t) = e^{-\frac{iEt}{\hbar}}$ et en injectant la solution à variables séparées $\psi(x,y,t) = \varphi(x)\chi(y)e^{-\frac{iEt}{\hbar}}$ dans l'équation de Schrödinger bidimensionnelle $i\hbar\frac{\partial\psi}{\partial t} = -\frac{\hbar^2}{2m}\underbrace{\Delta\psi}_{\text{laplacien}} + V(x,y)\psi$ on a
 - $-\frac{\hbar^2}{2m}\left(\frac{\partial^2\varphi}{\partial x^2}\chi+\varphi\frac{\partial^2\chi}{\partial y^2}\right)+\left(V(x)+V(y)\right)\varphi\chi=E\varphi\chi\,; \text{ on divise par }\varphi(x)\,\chi(y) \text{ et on sépare les variables pour obtenir }-\frac{\hbar^2}{2m}\frac{1}{\varphi(x)}\left(\frac{\partial^2\varphi}{\partial x^2}\right)+V(x)=E+\frac{\hbar^2}{2m}\frac{1}{\chi(y)}\left(\frac{\partial^2\chi}{\partial y^2}\right)-V(y)=\text{cte puisque le terme de gauche ne dépend que de }x \text{ et celui de droite que de }y.$

Ainsi $\varphi(x)$ est solution de l'équation de Schrödinger stationnaire 1D pour le potentiel harmonique V d'où une énergie $E_x = \left(n_x + \frac{1}{2}\right)\hbar\omega$ et de même pour $\chi(y)$ avec une énergie $E_y = \left(n_y + \frac{1}{2}\right)\hbar\omega$. En réinjectant dans l'égalité précédente on en déduit que $E = E_x + E_y = (n_x + n_y + 1)\hbar\omega$ avec n_x et n_y entiers positifs.

- (h) On obtient $E_n^{2D}=(n+1)\hbar\omega$ où n entier positif de dégénérescence $g_n^{2D}=n+1$ (nombre de paires d'entiers positifs n_x et n_y tels que $n_x+n_y=n$). Le fondamental d'énergie $E_0^{2D}=\hbar\omega$ est non dégénéré.
- II.A.2. (a) On peut citer les diodes laser qui émettent principalement dans l'infrarouge.
 - (b) On éclaire l'échantillon par une source de fréquence réglable (IR/visible/UV) et on mesure l'absorbance en fonction de la fréquence; des pics de résonance se présentent à certaines pulsations de résonance $\omega_{n,p}$ liée aux niveaux d'énergie par $\hbar\omega_{n,p}=E_n-E_p$.
 - (c) $\omega_c = \frac{eB_s}{m^*} < \frac{\omega}{\sqrt{2}} \Leftrightarrow B_s < B_{\text{max}} = \frac{m^*\omega}{e\sqrt{2}} = 25,6 \text{ T ok }!$
 - (d) $k_B T \sim 10^{-22} \,\mathrm{J} \ll \hbar \omega \sim 10^{-20} \,\mathrm{J}$ donc l'agitation thermique est négligeable et la quasi totalité des électrons se trouve dans l'état fondamental d'énergie E_0' qui est donc le seul à contribuer à l'absorbance.

(e) On effectue une modélisation linéaire très satisfaisante des courbes $f_{abs}(B_s)$.



Interprétation : on a $B_s < 9 \,\mathrm{T} \sim \frac{B_{\mathrm{max}}}{3} \,\mathrm{donc} \,\frac{\omega_c^2}{4} < \frac{\omega^2}{3^2 * 4 * 2} \ll \omega^2$; on peut donc considérer que $\Omega \simeq \omega$.

Les fréquences d'absorption s'expriment alors $f_1 = \frac{E_- - E_0'}{h} \simeq \frac{\omega}{2\pi} - \frac{e}{4\pi m^*} B_s$ et $f_2 = \frac{E_+ - E_0'}{h} \simeq \frac{\omega}{2\pi} + \frac{e}{4\pi m^*} B_s$.

Cela correspond bien aux variations affines symétriques observées.

Aspect quantitatif : pente mesurée $\pm 2,0.10^{11}\,\mathrm{Hz.T^{-1}}$ pour une pente théorique $\pm \frac{e}{4\pi m^*} = \pm 2,0.10^{11}\,\mathrm{Hz.T^{-1}}$; l'accord est excellent!

Il y a par contre un problème car les deux droites devraient se croiser sur l'axe des ordonnées à $\frac{\omega}{2\pi} = 14,5\,\mathrm{THz}$ ce qui n'est pas le cas (la question suivante va apporter l'explication).

II.A.3. On se place à B=0 et l'anisotropie lève la dégénérescence sur le premier niveau excité $E_1'=2\hbar\omega$: en effet on a $E_x=\left(n_x+\frac{1}{2}\right)\hbar\omega\left(1+\frac{\varepsilon}{2}\right)$ (DL au premier ordre en ε), $E_y=\left(n_y+\frac{1}{2}\right)\hbar\omega\left(1-\frac{\varepsilon}{2}\right)$ et $E=E_x+E_y$.

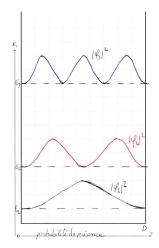
Le fondamental $(n_x, n_y) = (0, 0)$ est d'énergie inchangée $\hbar \omega$ mais les couples (1, 0) et (0, 1) correspondent désormais à des niveaux d'énergie différents :

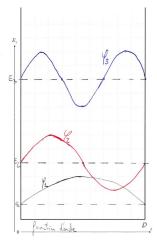
 $E_{(0,1)}=\left(2-\frac{\varepsilon}{2}\right)\hbar\omega$ premier niveau excité et $E_{(1,0)}=\left(2+\frac{\varepsilon}{2}\right)\hbar\omega$ deuxième niveau excité. C'est bien ce qui est observé à B=0 sur la figure 5 avec $f_{(0,1)}=\left(1-\frac{\varepsilon}{2}\right)\frac{\omega}{2\pi}\simeq 13,75\,\mathrm{THz}$ et $f_{(1,0)}=\left(1+\frac{\varepsilon}{2}\right)\frac{\omega}{2\pi}\simeq 15,15\,\mathrm{THz}$. On note que l'on a bien une moyenne de 14,45 THz égale à la valeur attendue de 14,5 THz aux incertitudes de lecture près.

On obtient une anisotropie $\varepsilon=\frac{f_{(1,0)}-f_{(0,1)}}{f_{\text{moy}}}=\frac{15,15-13,75}{14,45}\simeq 0,1.$ On note qu'on a bien $\varepsilon\ll 1$.

- II.A.4. (a) C'est le cours sur le puits infini de largeur $D: E_z = \frac{n_z^2 \hbar^2 \pi^2}{2m^* D^2}$ où $n_z \in \mathbb{N}^*$.
 - (b) On pourra considérer que le mvt de l'électron selon z est « gelé » si $|E_{z,2} E_{z,1}| \gg \hbar \omega$ soit $D \ll \sqrt{\frac{3}{2}} \pi \sqrt{\frac{\hbar}{m^* \omega}}$ (voir paragraphe B ci-après pour la justification).
 - (c) L'inégalité ci dessus se réécrit $D \ll \pi \sqrt{3} \Delta x$ alors que sur la figure on a $\Delta z \sim \Delta x$ donc l'échelle verticale a été dilatée.
 - (d) cf. cours, avec la condition de normalisation $(z \in [0; D]), \varphi_n(z) = \sqrt{\frac{2}{D}} \sin\left(\frac{n\pi z}{D}\right)$.
 - (e) Dans les deux cas les états stationnaires correspondent à $D=n\frac{\lambda}{2}$ mais la corde de Melde correspond à une onde mécanique classique alors que le puits quantique est justement quantique avec des aspects à la fois ondulatoires et corpusculaires où $|\varphi|^2$ est une probabilité de présence; pour le puits quantique l'énergie est quantifiée, contrairement à la corde de Melde où elle ne l'est pas.

- (f) Voir tracés ci-contre.
 - La fonction d'onde φ_n et la probabilité de présence $|\varphi_n|^2$ s'annulent sur les bords, et présentent n maxima (ventres) entre 0 et D et n-1 annulations (nœuds) à l'intérieur.
- (g) Pour les énergies élevées, la distance entre les nœuds et les ventres devient très faible : on tend vers une probabilité de présence uniforme qui est le comportement classique attendu.





OHQ en équilibre thermique

II.B.1.
$$P_n = \frac{1}{Z}e^{-\frac{E_n}{k_{\rm B}T}}$$
 où $Z = \sum_{n=0}^{+\infty}e^{-\frac{E_n}{k_{\rm B}T}} = e^{-\frac{E_0}{k_{\rm B}T}}\sum_{n=0}^{+\infty}\left(e^{-\frac{\hbar\omega}{k_{\rm B}T}}\right)^n = \frac{e^{-\frac{\hbar\omega}{2k_{\rm B}T}}}{1-e^{-\frac{\hbar\omega}{k_{\rm B}T}}} = \frac{1}{2\,\mathrm{sh}\,\frac{\hbar\omega}{2k_{\rm B}T}}$ est la fonction de partition.

II.B.2.
$$r = \frac{P_{n+1}}{P_n} = e^{-\frac{\hbar\omega}{k_{\rm B}T}} < 1$$

II.B.2. $r = \frac{P_{n+1}}{P_n} = e^{-\frac{\hbar \omega}{k_{\rm B}T}} < 1$. Si $\hbar \omega \ll k_{\rm B}T$ alors l'agitation thermique domine et $P_{n+1} \simeq P_n$; les états sont sensiblement équipro-

Si $\hbar\omega\gg k_{\rm B}T$ alors $P_{n+1}\ll P_n$. On peut dire que l'OHQ est « gelé » dans son état fondamental où se trouvent l'immense majorité des particules.

II.B.3.
$$\langle E \rangle = \sum_{n=0}^{+\infty} P_n E_n$$
. On pose $\beta = \frac{1}{k_{\rm B}T}$ et on constate que $\langle E \rangle = \frac{1}{Z} \sum_{n=0}^{+\infty} E_n e^{-\beta E_n} = -\frac{1}{Z} \frac{dZ}{d\beta}$. Du calcul de Z au 1) on déduit $\left| \langle E \rangle = \frac{\hbar \omega}{2} + \frac{\hbar \omega}{e^{\frac{\hbar \omega}{k_{\rm B}T}} - 1} = \frac{\hbar \omega}{2 \tanh \left(\frac{\hbar \omega}{2k_{\rm B}T} \right)} \right|$

- II.B.4. On déduit que pour l'OHQ en équilibre thermique :
 - Si $\hbar\omega \ll k_{\rm B}T$ alors $\tanh\left(\frac{\hbar\omega}{2k_{\rm B}T}\right) \simeq \frac{\hbar\omega}{2k_{\rm B}T}$ et $\langle E \rangle = k_{\rm B}T$; on retrouve le résultat classique correspondant au théorème d'équipartition de l'énergie : 2 degrés de liberté (DL) quadratiques et $\frac{k_{\rm B}T}{2}$ par DL quadratique classique.
 - Si $\hbar\omega\gg k_{\rm B}T$, l'OHQ est « gelé » dans son état fondamental et $\langle E\rangle=E_0=\frac{\hbar\omega}{2}$ (ok car $\tanh u\to 1$ si $u \to +\infty$).

La courbe en trait plein correspond donc à l'OHQ et celle en pointillés à l'OH classique.