Mode de convergence des suites de fonctions

Exercise 1 Pour tout entier n, on pose $f_n: x \mapsto xe^{-nx^2}$. Etudier la convergence simple de $(f_n)_{n\geqslant 0}$ sur \mathbb{R}_+ puis la convergence uniforme sur \mathbb{R}_+ .

Exercise 2 Pour tout entier n, on pose $f_n: x \mapsto \frac{x}{x^2 + n^2}$. Etudier la convergence simple de $(f_n)_{n \geqslant 0}$ sur \mathbb{R} puis la convergence uniforme sur \mathbb{R} .

Exercise 3 Soient $\alpha > 0$ et, pour tout $n \in \mathbb{N}$, $f_n : x \mapsto \frac{(nx)^{\alpha}}{1 + nx^2}$. Étudier la convergence simple, uniforme de (f_n) sur \mathbb{R}_+ , sur $[a, +\infty[$ avec a > 0.

Exercise 4 Pour tout entier n, on pose $f_n: x \mapsto e^{-x} \left(1 + \frac{x}{n}\right)^n$. Etudier la convergence simple de $(f_n)_{n\geqslant 0}$ sur \mathbb{R}_+ puis la convergence uniforme sur [0,a] (a>0) et enfin la convergence uniforme sur \mathbb{R}_+ .

Exercise 5 Pour tout entier n, on pose $f_n: x \mapsto \frac{x^n}{1+x^n}$. Etudier la convergence simple de $(f_n)_{n\geqslant 0}$ sur \mathbb{R}_+ . Etudier la convergence uniforme de $(f_n)_{n\geqslant 0}$ sur [0,a] (0 < a < 1) puis sur $[b,+\infty[$ (b > 1) et enfin sur \mathbb{R}_+ .

Exercise 6 Déterminer la convergence simple de la suite de fonctions $f_n: x \mapsto \frac{x^n}{n!}e^{-x}$. Sur quels types d'intervalles est-elle uniformément convergente?

Exercise 7 Pour tout entier $n \ge 1$, on pose $f_n : x \mapsto n \ln \left(1 + \frac{x}{n}\right)$ et $g_n : x \mapsto \left(1 + \frac{x}{n}\right)^n$.

- 1. Expliciter les limites simples des suites $(f_n)_n$ et $(g_n)_n$ puis prouver que les suites $(f_n)_{n\geqslant 1}$ et $(g_n)_{n\geqslant 1}$ ne convergent pas uniformément sur \mathbb{R}_+ .
- 2. Montrer que la suite de fonctions $(f_n)_{n\geq 1}$ converge uniformément sur tout segment [0,a] (a>0)
- 3. Prouver que $\forall (x,y) \in \mathbb{R}_+$, $|e^x e^y| \leq e^{\max(x,y)} |x-y|$. En déduire que la suite $(g_n)_{n \geq 1}$ converge uniformément sur tout segment [0,a] (a>0).

Régularité des limites de suites de fonctions

Exercise 8 Pour tout entier n, on note $f_n: x \mapsto \cos(2\pi n! x)$. On suppose qu'il une fonction f telle que $(f_n)_{n \in \mathbb{N}}$ converge vers f uniformément sur un segment [a,b]

- 1. Calculer $\lim_{n\to+\infty} f_n(x)$ lorsque $x\in\mathbb{Q}$. En déduire que f=1 sur [a,b].
- 2. Calculer $\lim_{n\to+\infty} \int_{0}^{1} f_n(t) dt$ et $\int_{0}^{1} f$. En déduire une contradiction. Conclusion ?

Exercise 9 On admet le résultat suivant :

$$\forall \left(a_{0},..,a_{d}\right) \in \mathbb{R}^{d+1}, \quad \exists \left(L_{i}\right)_{0 \leqslant i \leqslant d} \in \left(\mathbb{R}_{d}\left[X\right]\right)^{d+1}, \quad \forall P \in \mathbb{R}_{d}\left[X\right], \quad P\left(X\right) = \sum_{i=0}^{d} P\left(a_{i}\right) L_{i}\left(X\right).$$

Soit d'un entier naturel, (f_n) une suite de fonctions polynômiales de \mathbb{R} dans \mathbb{R} , de degré au plus d. On suppose que cette suite converge simplement sur \mathbb{R} . Montrer que la limite est polynômiale de degré au plus d, la convergence étant uniforme sur tout segment.

Exercise 10 Soit $q \in]-1,1[$. On pose : $\forall n \in \mathbb{N}^*$, $\forall x \in \mathbb{R}$, $f_n(x) = \prod_{k=1}^n (1-q^kx)$. Prouver que la suite $(f_n)_{n\geqslant 0}$ converge sur [-0,1] vers une fonction continue. Est-ce encore le cas sur \mathbb{R} ?

Exercise 11 Pour tout entier n, on pose $f_n: x \mapsto \sum_{k=-n}^n \frac{1}{x+k}$. Prouver que la suite $(f_n)_n$ converge simplement sur $\mathbb{R}\setminus\mathbb{Z}$ vers une fonction f qui est 1-périodique. Prouver que f est continue sur $\mathbb{R}\setminus\mathbb{Z}$.

Convergence des séries de fonctions

Exercise 12 Déterminer le domaine de convergence simple puis le domaine de convergence normale des séries $\sum_{n\geqslant 0} xe^{-n^2x}$. $et \sum_{n\geqslant 0} ne^{-n^2x}$.

Exercise 13 Soit $f \in C^0(\mathbb{R}, \mathbb{R})$, on pose : $f_0 = f$ et $\forall n \in \mathbb{N}^{\times}$, $f_n(x) = \int_0^x f_{n-1}(t)dt$.

- 1. Soit a > 0. Prouver que $\forall n \in \mathbb{N}$, $\forall x \in [-a, a]$, $|f_n(x)| \leqslant \frac{|x|^n}{n!} \sup_{[-a, a]} |f|$.
- 2. Démontrer que la série de fonctions $\sum_{n\geqslant 0} f_n$ converge uniformément sur tout segment de \mathbb{R} . On note S sa somme.
- 3. Etablir que $\forall x \in \mathbb{R}$, $S(x) = f(x) + \int_{0}^{x} S(t) dt$ puis expliciter S lorsque $f: x \mapsto e^{x}$.

Exercise 14 Montrer que la série $\sum_{n\geqslant 1} \frac{x}{x^2+n^2}$ converge converge simplement sur $\mathbb R$ et converge normalement sur tout segment de $\mathbb R$.

Exercise 15 Soit f une application réelle continue sur [0,1]; on étudie la série de fonctions $\sum_{n\geqslant 0} (-1)^n t^n f(t)$.

- 1. Éudier la convergence simple de cette série.
- 2. Montrer qu'elle converge uniformément sur [0,1] si et seulement si f(1)=0.

Limites de somme de séries de fonctions

Exercise 16 Soit $f: x \mapsto \sum_{n=2}^{+\infty} \frac{\ln(n)\sqrt{x}}{1+n^2x}$. Déterminer le domaine de définition de f. Calculer sa limite puis un équivalent quand $x \to +\infty$.

Exercise 17 On pose $f: x \mapsto \sum_{n=1}^{+\infty} (-1)^n \ln \left(1 + \frac{x^2}{n(1+x)^2} \right)$.

- 1. Montrer que f est bien définie sur \mathbb{R}_+ .
- 2. Prouver que $\lim_{n \to \infty} f = \sum_{n=1}^{+\infty} (-1)^n \ln \left(1 + \frac{1}{n} \right)$.

Exercise 18 Soit $S(x) = \sum_{n=1}^{+\infty} \frac{1}{n + n^2 x^2}$.

- 1. Étudier le domaine de définition de S.
- 2. Calculer $\lim_{x \to +\infty} S(x)$ et proposer un équivalent de S(x) quand $x \to +\infty$.
- 3. En utilisant la comparaison série-intégrale, proposer un équivalent simple de $S\left(x\right)$ quand $x\rightarrow0^{+}.$

Exercise 19 À l'aide de la comparaison série-intégrale, donner un encadrement de $S(x) = \sum_{n=1}^{+\infty} \frac{x}{x^2 + n^2}$.

En déduire la valeur de $\lim_{+\infty} S$ puis, sans calcul, justifier que la la série $\sum_{n\geqslant 1} \frac{x}{x^2+n^2}$ ne converge pas uniformément sur tout intervalle non borné de \mathbb{R} .

Exercise 20 On pose
$$f_n: x \mapsto \frac{e^{-x\sqrt{n}}}{\sqrt{n}}$$
 et $f = \sum_{n=1}^{+\infty} f_n$.

- 1. Déterminer le domaine de définition de f et préciser la valeur de $\lim_{x \to +\infty} f(x)$.
- 2. À l'aide la comparaison série-intégrale, déterminer un encadrement de f. En déduire un équivalent simple de f(x) lorsque x tend vers 0.

Exercise 21 On pose $f: x \mapsto \sum_{n=1}^{+\infty} \frac{x}{n(1+nx^2)}$. Préciser le domaine de définition de f et calculer $\lim_{x \to +\infty} f(x)$.

Continuité d'une somme de séries de fonctions

Exercise 22 Prouver que $f: x \mapsto \sum_{n=1}^{+\infty} \frac{x}{n(1+nx^2)}$ est continue sur \mathbb{R} .

Exercise 23 Soit $f: x \mapsto \sum_{n=1}^{+\infty} \frac{1}{(\operatorname{sh}(nx))^2}$. Expliciter son domaine de définition et étudier sa continuité.

Exercise 24 Donner le domaine de définition de $g: x \mapsto \sum_{n=1}^{+\infty} \frac{x^n}{1+x^n}$ et justifier sa continuité.

Exercise 25 Soit $a \in \mathbb{R}$ et $\varphi : [-a, a] \to \mathbb{R}$. On définit $(u_n)_{n \in \mathbb{N}}$ par : $\forall n \in \mathbb{N}$, $\forall x \in \mathbb{R}$, $u_n(x) = \varphi\left(\frac{x}{2^n}\right)$. On suppose qu'il existe $K \in \mathbb{R}_+$ pour lequel $\forall x \in \mathbb{R}$, $|\varphi(x)| \leq K|x|$.

- 1. Montrer que la série $\sum_{n\geq 0} u_n$ converge sur [-a,a] et que sa somme est continue.
- 2. Montrer que S est la seule fonction continue f vérifiant l'équation $f(x) f\left(\frac{x}{2}\right) = \varphi(x)$ avec la condition f(0) = 0.

Exercise 26 Soient (a_n) une suite réelle de limite nulle, $G:[0,1]\to\mathbb{R}$ continue et croissante sur [0,1].

Montrer que $f: x \mapsto \sum_{k=0}^{+\infty} a_k \left(G\left(x^k\right) - G\left(x^{k+1}\right) \right)$ est définie et continue sur [0,1].

Dérivabilité d'une somme de séries de fonctions

Exercise 27 Montrer que $f: x \mapsto \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!(x+n)}$ est de classe C^{∞} sur $[1, +\infty]$ puis sur $\mathbb{R} \setminus \mathbb{Z}^-$.

Exercise 28 Soit $f: x \mapsto \sum_{n=0}^{+\infty} \frac{(-1)^n}{x+n}$. Etablir que f est de classe C^{∞} sur $]0, +\infty[$.

Exercise 29 Prouver que la fonction $f: x \mapsto \sum_{n=0}^{+\infty} \frac{e^{inx}}{n!}$ est de classe C^{∞} sur \mathbb{R} .

Exercise 30 Effectuer la décomposition en éléments simples dans \mathbb{C} de $\frac{1}{n^2+x^2}$. En déduire que $f: x \mapsto \sum_{n=1}^{+\infty} (-1)^{n-1} \frac{n}{n^2+x^2}$ est de classe C^{∞} sur \mathbb{R} .

Étude de fonctions

Exercise 31 On pose $f(x) = \sum_{n=1}^{+\infty} (-1)^{n-1} \ln \left(1 + \frac{x}{n}\right)$.

- 1. Montrer que f est définie et strictement croissante sur \mathbb{R}_+ .
- 2. Justifier que $\forall x \in \mathbb{R}_+, \quad f(x) + f(x+1) = \ln(x+1) + f(1)$.
- 3. En déduire $\lim_{x\to +\infty} f(x)$ et proposer un équivalent simple de f(x) quand $x\to +\infty$.

Exercise 32 Soit $f(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{x+n}$.

- 1. Etudier sa continuité et sa dérivabilité sur $]0, +\infty[$.
- 2. Préciser le signe de f ainsi que sa monotonie et l'allure du graphe de f sur $[0, +\infty[$.
- 3. Déterminer les limites $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to 0} f(x)$.

Exercise 33 On considère $f: x \mapsto \sum_{n=1}^{+\infty} \left(\frac{x}{n} - \ln\left(1 + \frac{x}{n}\right)\right)$. Justifier que f est définie sur \mathbb{R}_+ , qu'elle est de classe C^1 sur \mathbb{R}_+ et qu'elle réalise une bijection de \mathbb{R}_+ sur \mathbb{R}_+ .