PARTIE I - Exemple 1

Dans cette partie f est la fonction définie sur \mathbb{R}^+ par f(t) = Arctan(t) (où Arctan désigne la fonction Arctangente).

- 1. On sait que la fonction Arctangente est définie, de classe C^1 sur \mathbb{R}^+ et vérifie Arctan(0) = 0 donc $f \in E_0$. De plus $\lim_{t\to 0^+} \frac{f(t)}{t} = f'(0) = 1$ d'où la fonction $g: t \mapsto \left(\frac{f(t)}{t}\right)^2$ est prolongeable par continuité en 0 et $0 \leqslant g(t) \sim_{+\infty} \frac{\pi^2}{4t^2}$, donc la fonction g est intégrable sur \mathbb{R}_+^* et donc $f \in E_1$.
- 2. Pour tout x > 0, la fonction $H_x : t \mapsto \frac{1}{(t^2 + 1)(t^2 + x^2)}$ est positive et continue sur \mathbb{R}^+ avec $H_x(t) \leqslant \frac{1}{x^2(1+t^2)}$, cette dernière fonction est intégrable sur $[1, +\infty[$ pour tout x > 0 donc pour tout x > 0, H_x est intégrable sur \mathbb{R}^+ . On remarque que $\forall t \in \mathbb{R}^+, (f'(t))^2 = H_1(t)$, donc $f \in E_2$.
- 3. Calcul de $N_2(f)$. Pour $x \in \mathbb{R}_+^*$, on note $\varphi(x) = \int_{\mathbb{R}_+} H_x(t) dt$.
 - (a) Pour tout x > 0, H_x est continue sur \mathbb{R}^+ et intégrable sur \mathbb{R}^+ . Pour tout $t \in \mathbb{R}^+$, $x \mapsto H_x(t)$ est continue sur \mathbb{R}_+^* . De plus pour tout a > 0 et tout $x \in [a, +\infty[$,

$$\forall t \in \mathbb{R}^+, 0 \leqslant H_x(t) \leqslant H_a(t)$$
 (hypothèse de domination)

la fonction H_a étant continue et intégrable sur \mathbb{R}^+ , on sait par théorème de continuité que la fonction φ est continue sur tout intervalle $[a, +\infty[$ avec a > 0, donc est continue sur \mathbb{R}_+^* .

(b) Soit $x \in \mathbb{R}_+^*$, $x \neq 1$, par décomposition en éléments simples (deux pôles simples $:-1, -x^2$)

$$\frac{1}{(T+1)(T+x^2)} = \frac{1}{x^2 - 1} \left(\frac{1}{T+1} - \frac{1}{T+x^2} \right)$$

(c) D'après la décomposition en éléments simples précédente, pour $x \in \mathbb{R}_+^*, x \neq 1$, on a :

$$\forall t \in \mathbb{R}^+, H_x(t) = \frac{1}{x^2 - 1} \left(\frac{1}{1 + t^2} - \frac{1}{t^2 + x^2} \right)$$

On en déduit que pour tout $x \in \mathbb{R}_+^*, x \neq 1$, on a :

$$\varphi(x) = \frac{1}{x^2 - 1} \int_0^{+\infty} \left(\frac{1}{1 + t^2} - \frac{1}{t^2 + x^2} \right) dt = \frac{1}{x^2 - 1} \int_0^{+\infty} \left(\frac{1}{1 + t^2} - \frac{1}{x} \frac{1/x}{1 + (t/x)^2} \right) dt$$

$$\varphi(x) = \frac{1}{x^2 - 1} \lim_{b \to +\infty} \left[Arctan(t) - \frac{1}{x} Arctan(\frac{t}{x}) \right]_0^b = \frac{1}{x^2 - 1} \left(\frac{\pi}{2} - \frac{\pi}{2x} \right) = \frac{\pi}{2x(1 + x)}$$

(d) Par définition de $N_2(f)$ avec $(f'(t))^2 = H_1(t)$ on a : $N_2(f) = \sqrt{\varphi(1)}$ et par continuité de φ en 1 on aura : $N_2(f) = \sqrt{\lim_{x \to 1} \varphi(x)} = \frac{\sqrt{\pi}}{2}$.

1

4. La fonction $p: u \in \mathbb{R}_+ \mapsto u - Arctan(u)$ est dérivable sur \mathbb{R}_+ et $\forall u \in \mathbb{R}_+, p'(u) = \frac{u^2}{1+u^2}$, la fonction p est donc croissante sur \mathbb{R}_+ , or p(0) = 0 donc

$$\forall u \in \mathbb{R}_+, u - Arctan(u) \geqslant 0$$

- 5. Pour tout $x \in \mathbb{R}_+$, la fonction $G_x : t \mapsto \frac{Arctan(xt)}{t(t^2+1)}$ est positive et continue sur \mathbb{R}_+^* avec $G_x(t) \sim_0 \frac{x}{1+t^2}$ et $G_x(t) \sim_{+\infty} \frac{\pi}{2t^3}$, on en déduit que pour tout $x \in \mathbb{R}^+$, G_x est intégrable sur \mathbb{R}_+^* .
- 6. Calcul de $N_1(f)$.

Pour
$$x \in \mathbb{R}^+$$
, on pose $\theta(x) = \int_{\mathbb{R}_+^*} G_x(t)dt$ et $G: (x,t) \in \mathbb{R}^+ \times \mathbb{R}_+^* \mapsto G_x(t)$.

(a) Pour tout $x \in \mathbb{R}^+$, la fonction G_x est continue et intégrable sur \mathbb{R}^*_+ . Pour tout t > 0, la fonction $x \mapsto G_x(t)$ est continue sur \mathbb{R}^+ . On a vu que $\forall u \in \mathbb{R}^+$, $Arctan(u) \leq u$ et donc pour tout a > 0 et tout $x \in [0, a]$:

$$0 \leqslant G_x(t) \leqslant \frac{xt}{t(1+t^2)} \leqslant \frac{a}{1+t^2}$$
 (hypothèse de domination avec $t \mapsto \frac{1}{1+t^2}$ intégrable sur \mathbb{R}^+)

On en déduit par application du théorème de continuité d'une intégrale dépendant d'un paramètre que la fonction θ est continue sur tout intervalle [0, a] avec a > 0 et donc θ est continue sur \mathbb{R}^+ .

- (b) On sait déjà que la fonction θ est continue sur \mathbb{R}^+ , de plus la fonction G est dérivable par rapport à sa première variable x pour tout $t \in \mathbb{R}_+^*$ avec $\frac{\partial G}{\partial x}(x,t) = \frac{1}{(1+t^2)(1+x^2t^2)}$. On aura donc pour tout t > 0, la fonction $x \mapsto \frac{\partial G}{\partial x}(x,t)$ est continue sur \mathbb{R}^+ , pour tout $x \in \mathbb{R}^+$, la fonction $t \mapsto \frac{\partial G}{\partial x}(x,t)$ est continue, positive sur \mathbb{R}_+^* avec $0 \leqslant \frac{\partial G}{\partial x}(x,t) \leqslant \frac{1}{1+t^2}$, on en déduit que $t \mapsto \frac{\partial G}{\partial x}(x,t)$ est intégrable sur \mathbb{R}_+^* et par domination, la fonction θ est de classe \mathcal{C}^1 sur \mathbb{R}^+ avec la formule de Leibniz : $\theta'(x) = \int_0^{+\infty} \frac{\partial G}{\partial x}(x,t) dt$.
- (c) D'après ce qui précède, $\forall x \in \mathbb{R}^+, \theta'(x) = \int_0^{+\infty} \frac{1}{(1+t^2)(1+x^2t^2)} dt$. Pour x > 0, on aura donc $\theta'(x) = \frac{1}{x^2} \int_0^{+\infty} H_{\frac{1}{x}}(t) dt = \frac{1}{x^2} \varphi(\frac{1}{x}) = \frac{\pi}{2(x+1)}$ d'après le résultat de la question 3b et par continuité en 0 de θ' , la formule est encore vraie pour x = 0.
- (d) On déduit du résultat précédent que pour tout $x \in \mathbb{R}^+$, $\theta(x) \theta(0) = \frac{\pi}{2}ln(1+x) = \theta(x)$.
- (e) $N_1^2(f) = \lim_{a \to 0} \lim_{b \to +\infty} \int_a^b \frac{f^2(t)}{t^2} dt$. Par intégration par parties avec f(t) = Arctan(t), on aura :

$$\int_{a}^{b} \frac{f^{2}(t)}{t^{2}} dt = \left[-\frac{f^{2}(t)}{t} \right]_{a}^{b} + \int_{a}^{b} \frac{2f'(t)f(t)}{t} dt$$

or $\lim_{a\to 0^+} \frac{f^2(t)}{t} = \lim_{a\to 0^+} Arctan(t) \frac{Arctan(t)}{t} = 0$ et $\lim_{b\to +\infty} \frac{Arctan^2(t)}{t} = 0$, on en déduit que :

$$N_1^2(f) = \int_0^{+\infty} \frac{2Arctan(t)}{t(1+t^2)} dt = 2\theta(1) = \pi \ln(2)$$

On en déduit que $N_1(f) = \sqrt{\pi ln(2)}$ et donc $\frac{N_1(f)}{N_2(f)} = 2\sqrt{ln(2)}$.