Exercice 1

On rappelle que :

$$\sin(p) - \sin(q) = \sin(p) + \sin(-q) = 2\sin\left(\frac{p-q}{2}\right)\cos\left(\frac{p+q}{2}\right).$$

Préliminaire.

- 1. Calculer $\int_0^{\frac{\pi}{2}} \cos^2(t) dt$ et exprimer $\sin(a) \sin(b)$.
- 2. On définit g ainsi

$$g: [0, \frac{\pi}{2}] \to \mathbb{R}$$

$$x \mapsto \begin{cases} 0 & \text{si} & x = 0 \\ \frac{\cos(x)}{\sin(x)} - \frac{1}{x} & \text{si} & x \neq 0 \end{cases}$$

- (a) Déterminer un développement limité à l'ordre 1 de g. Que peut on en déduire?
- (b) Déterminer une expression de g'(x) pour x non nul. Déterminer un développement limité de g' en 0 à l'ordre 0. On vérifiera la compatibilité de ce résultat avec celui de la question précédente. En déduire que g est de classe \mathcal{C}^1 sur son ensemble de définition.

Calcul d'une intégrale

3. Soit $f \in \mathcal{C}^1([a,b],\mathbb{R})$. Pour $n \in \mathbb{N}$, on note

$$s_n = \int_a^b f(t)\sin(nt)dt.$$

Déterminer la limite de $(s_n)_{n\geq 0}$. (on pourra faire une intégration par parties).

- 4. Montrer que pour $n \in \mathbb{N}$, $I_n = \int_0^{\frac{\pi}{2}} \frac{\sin(2nt)\cos(t)}{\sin(t)} dt$ existe.
- 5. Montrer à l'aide d'une démonstration par récurrence que la suite $\left(\int_0^{\frac{\pi}{2}} \frac{\sin(2nt)\cos(t)}{\sin(t)} dt\right)_{n \in \mathbb{N}^*}$ est constante et donner sa valeur.
- 6. Montrer que $\int_0^{+\infty} \frac{\sin(t)}{t} dt$ est convergente.

On sait donc que $\lim_{x\to +\infty} \int_0^x \frac{\sin(t)}{t} \mathrm{d}t$ existe et est finie.

7. Pour $n \in \mathbb{N}$, justifier l'existence de $J_n = \int_0^{\frac{\pi}{2}} \frac{\sin(2nt)}{t} dt$. A l'aide d'un changement de variables exprimer J_n à l'aide d'une intégrale dont l'intégrande ne dépend pas de n. En déduire que

$$\lim_{n \to +\infty} \int_0^{\frac{\pi}{2}} \frac{\sin(2nt)}{t} dt = \int_0^{+\infty} \frac{\sin(t)}{t} dt.$$

8. En considérant $I_n - J_n$, déduire des précédentes questions la valeur de

$$\int_0^{+\infty} \frac{\sin(t)}{t} dt.$$

PLD 1

Exercice 2

On pose, lorsque cela est possible

$$f(x) = \int_{1}^{+\infty} \frac{dt}{t^x \sqrt{t^2 - 1}}$$

- 1. Déterminer l'ensemble de définition I de f.
- 2. En justifiant son existence, calculer $\int_0^{+\infty} \frac{dx}{e^x + e^{-x}}$.
- 3. Calculer f(1). On pourra utiliser le changement de variables $u = e^x$.
- 4. Calculer f(2). On pourra remarquer que la dérivée de $x \mapsto \frac{\operatorname{sh}(x)}{\operatorname{ch}(x)}$ est égale à $x \mapsto \frac{1}{\operatorname{ch}^2(x)}$.
- 5. Vérifier que f est positive sur I.
- 6. Montrer que f est décroissante sur I.
- 7. Soit $x \in I$. Démontrer la relation

$$f(x+2) = \frac{x}{x+1}f(x)$$

On pourra effectuer, en la justifiant, une intégration par parties.

- 8. Soit $p \in \mathbb{N}^*$. Donner l'expression de f(2p) à l'aide de factorielles.
- 9. Pour tout réel x > 0, on pose

$$\phi(x) = xf(x)f(x+1)$$

Prouver que $\phi(x+1) = \phi(x)$. Calculer $\phi(n)$ pour tout $n \in \mathbb{N}^*$.

- 10. En utilisant la question précédente, déterminer un équivalent de f(x) quand $x \to 0^+$.
- 11. Vérifier que $\forall n \in \mathbb{N}^*, \ f(n)f(n+1) = \frac{\pi}{2n}$. En déduire que

$$f(n) \underset{\substack{n \to +\infty \\ n \in \mathbb{N}^*}}{\sim} \sqrt{\frac{\pi}{2n}}$$

12. En utilisant des parties entières, prouver que

$$f(x) \underset{x \to +\infty}{\sim} \sqrt{\frac{\pi}{2x}}$$

13. Déduire des questions précédentes le tableau des variations de f sur I et tracer sa courbe représentative dans un repère orthonormé.

Exercice 3

I désigne un intervalle non vide de \mathbb{R} contenant 0.

Dans tout le sujet si $f \in \mathcal{C}^0(I)$ et c un réel strictement positif. On définit

$$\forall x \in I, \ \varphi(f)(x) = e^{-cx} \int_0^x e^{ct} f(t) \ dt.$$

1. Montrer que φ est de classe \mathcal{C}^1 sur I et donner une expression de φ' . Montrer que φ est solution du problème de Cauchy :

$$y' + cy = f$$
 et $y(0) = 0$.

PLD 2

2. Dans cette question, I désigne l'intervalle $[0, +\infty[$ et, pour tout réel $\lambda > 0, f_{\lambda}$ est la fonction définie sur I par :

$$\forall x \in I, \ f_{\lambda}(x) = e^{-\lambda x}.$$

- (a) Déterminer $\varphi(f_{\lambda})$.
- (b) Démontrer que f_{λ} et $\varphi(f_{\lambda})$ sont intégrables sur I. Calculer $\int_{0}^{+\infty} f_{\lambda}$ et $\int_{0}^{+\infty} \varphi(f_{\lambda})$.
- (c) Démontrer que f_{λ}^2 et $\varphi(f_{\lambda})^2$ sont intégrables sur I. Calculer $\int_0^{+\infty} f_{\lambda}^2$ et $\int_0^{+\infty} \varphi(f_{\lambda})^2$.

Exercice 4

1. Soit $x \in [1, +\infty[$, calculer :

$$\int_{1}^{x} \frac{\ln(t)}{t} dt.$$

2. L'intégrale $\int_1^{+\infty} \frac{\ln(1+t)}{t} dt$ est-elle convergente? (le justifier). En déduire, en précisant bien toutes les hypothèses du théorème utilisé que

$$\int_{1}^{x} \frac{\ln(1+t)}{t} dt \underset{x \to +\infty}{\sim} \frac{1}{2} \left(\ln(x)\right)^{2}.$$

La question suivante permet d'être plus précis et redémontre le résultat.

3. En expriment différemment :

$$\int_{1}^{x} \frac{\ln(1+t)}{t} dt - \int_{1}^{x} \frac{\ln(t)}{t} dt,$$

montrer qu'il existe un réel C tel que

$$\int_{1}^{x} \frac{\ln(1+t)}{t} dt = \frac{1}{x \to +\infty} \frac{1}{2} \left(\ln(x)\right)^{2} + C + \epsilon(x)$$

où
$$\lim_{x \to +\infty} \epsilon(x) = 0$$
.

4. Donner un équivalent de la fonction ϵ au voisinage de $+\infty$.

Annexe

Liste des résultats et techniques utilisées :

- TFA
- IPP (plusieurs fois)
- Changement de variables (plusieurs fois)
- Intégration des relations de comparaison
- Formules trigonométriques
- Etude d'une intégrale généralisée (tout le temps)
- Calcul de primitives pas trop compliquées.
- Savoir montrer qu'une fonction est de classe C^1 .
- Caractérisation séquentielle des limites.

PLD 3