Problème

On note, pour n entier tel que $n \geq 2$, $\mathcal{M}_n(\mathbb{R})$ l'espace vectoriel des matrices carrées d'ordre n à coefficients réels. On s'intéresse dans ce problème, à travers divers exemples, à la réduction de matrices par blocs du type $\begin{pmatrix} aA & bA \\ cA & dA \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{R})$ où $A \in \mathcal{M}_n(\mathbb{R})$ et a,b,c,d sont quatre réels non tous nuls. On rappelle qu'un produit de matrices par blocs se fait de manière similaire à un produit classique :

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} A' & B' \\ C' & D' \end{pmatrix} = \begin{pmatrix} AA' + BC' & AB' + BD' \\ CA' + DC' & CB' + DD' \end{pmatrix}$$

chaque matrice bloc étant une matrice de $\mathcal{M}_n(\mathbb{R})$.

On pourra utiliser ici sans démonstration que si $P \in GL_n(\mathbb{R})$, $A, B \in \mathcal{M}_n(\mathbb{R})$ et $T \in \mathbb{R}[X]$ est un polynôme, $A = P^{-1}BP$ entraı̂ne $T(A) = P^{-1}T(B)P$.

On rapelle que si A, B, C sont des matrices de $\mathcal{M}_n(\mathbb{R})$, $\det \begin{pmatrix} A & B \\ 0 & C \end{pmatrix} = \det(A) \det(C)$.

Questions préliminaires

L'objectif est de démontrer le résultat suivant : "une matrice $M \in \mathcal{M}_n(\mathbb{R})$ est diagonalisable sur \mathbb{R} si et seulement s'il existe un polynôme P scindé sur \mathbb{R} , à racines simples, vérifiant P(M) = 0". Pour cela, on considère une matrice $M \in \mathcal{M}_n(\mathbb{R})$ et on note u l'endomorphisme de \mathbb{R}^n canoniquement associé à M.

- 1. Q.7 On suppose que u est diagonalisable et on note $\lambda_1, \ldots, \lambda_p$ $(p \ge 1)$ les valeurs propres distinctes de u. Démontrer que le polynôme $P = (X \lambda_1) \ldots (X \lambda_p)$ est annulateur de u.
 - **Q.8** Réciproquement, on suppose que μ_1, \ldots, μ_r sont r nombres réels distincts $(r \ge 1)$ tels que $Q = (X \mu_1) \ldots (X \mu_r)$ est un polynôme annulateur de u. En utilisant le lemme des noyaux, démontrer que u est diagonalisable sur $\mathbb R$ et que le spectre de u est inclus dans l'ensemble $\{\mu_1, \ldots, \mu_r\}$.

Un exemple où la matrice $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ est diagonalisable sur $\mathbb R$

- **Q.9** On suppose que $V=\begin{pmatrix} 4 & 2 \\ -3 & -1 \end{pmatrix}$. Démontrer que V est diagonalisable sur $\mathbb R$ et donner une matrice inversible P que l'on notera $P=\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ et une matrice diagonale vérifiant $V=PDP^{-1}$ (on précisera P^{-1}).
- **Q.10** Soit $A \in \mathcal{M}_n(\mathbb{R})$. On pose alors la matrice par blocs $Q = \begin{pmatrix} \alpha I_n & \beta I_n \\ \gamma I_n & \delta I_n \end{pmatrix}$. Justifier que la matrice Q est inversible en exhibant son inverse Q^{-1} et démontrer que la matrice $\begin{pmatrix} 4A & 2A \\ -3A & -A \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{R})$ est semblable à la matrice $B = \begin{pmatrix} A & 0 \\ 0 & 2A \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{R})$.
- **Q.11** On suppose que la matrice A est diagonalisable sur \mathbb{R} , ce qui signifie qu'il existe une matrice R inversible et une matrice Δ diagonale telles que $A = R\Delta R^{-1}$. Calculer le produit de matrices par blocs

$$\begin{pmatrix} R^{-1} & 0 \\ 0 & R^{-1} \end{pmatrix} B \begin{pmatrix} R & 0 \\ 0 & R \end{pmatrix}$$

Que peut-on en déduire pour la matrice $\begin{pmatrix} 4A & 2A \\ -3A & -A \end{pmatrix}$?

Q.12 On se propose de démontrer la réciproque du résultat précédent. On suppose que la matrice $\begin{pmatrix} 4A & 2A \\ -3A & -A \end{pmatrix}$ est diagonalisable. Soit T un polynôme scindé à racines simples annulateur de cette matrice, calculer T(A). Donner une condition nécessaire et suffisante pour que la matrice $\begin{pmatrix} 4A & 2A \\ -3A & -A \end{pmatrix}$ soit diagonalisable.

Un exemple où la matrice $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ est trigonalisable sur $\mathbb R$

- **Q.13** Démontrer que la matrice $E = \begin{pmatrix} 3 & -2 \\ 2 & -1 \end{pmatrix}$ est trigonalisable sur \mathbb{R} et donner une matrice inversible P telle que $E = P \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} P^{-1}$.
- **Q.14** Soit $A \in \mathcal{M}_n(\mathbb{R})$, démontrer que la matrice $\begin{pmatrix} 3A & -2A \\ 2A & -A \end{pmatrix}$ est semblable à la matrice $F = \begin{pmatrix} A & -2A \\ 0 & A \end{pmatrix}$.
- Q.15 On suppose que la matrice F est diagonalisable sur \mathbb{R} . Soit $U \in \mathbb{R}[X]$ un polynôme annulateur de F, scindé sur \mathbb{R} et à racines simples. On note U' le polynôme dérivé de U. Démontrer que $\begin{pmatrix} U(A) & -2AU'(A) \\ 0 & U(A) \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{R})$ est la matrice nulle.
- **Q.16** Montrer que le polynôme minimal de A divise U et XU'. Que peut on dire du pgcd de U et U'? En utilisant un théorème arithmétique, montrer que le polynôme minimal de la matrice A est X. En déduire la valeur de la matrice A.
- **Q.17** Donner une condition nécessaire et suffisante sur la matrice A pour que la matrice $\begin{pmatrix} 3A & -2A \\ 2A & -A \end{pmatrix}$ soit diagonalisable.
- **Q.18** On suppose que la matrice F est trigonalisable sur \mathbb{R} . Exprimer le polynôme caractéristique de F en fonction de celui de A. En déduire que F est trigonalisable sur \mathbb{R} si et seulement si A est trigonalisable sur \mathbb{R} .
- **Q.19** Donner un exemple de matrice $A \in \mathcal{M}_n(\mathbb{R})$ telle que la matrice $\begin{pmatrix} 3A & -2A \\ 2A & -A \end{pmatrix} \in \mathcal{M}_4(\mathbb{R})$ ne soit pas trigonalisable sur \mathbb{R} .

Applications

Q.20 Soit u un endomorphisme de \mathbb{R}^4 dont la matrice dans la base canonique (e_1, e_2, e_3, e_4) de \mathbb{R}^4 est

$$M = \begin{pmatrix} 1 & 3 & 2 & 6 \\ 2 & 2 & 4 & 4 \\ 2 & 6 & 1 & 3 \\ 4 & 4 & 2 & 2 \end{pmatrix}$$

Déterminer deux sous-espaces vectoriels de dimension 2 stables par u. On pourra s'inspirer de la question 10.

Q.21 En adaptant la démarche présentée dans le premier exemple de ce problème, démontrer que la matrice

$$M = \begin{pmatrix} 4 & 0 & 2 & 0 \\ 0 & 4 & 0 & 2 \\ 2 & 0 & 4 & 0 \\ 0 & 2 & 0 & 4 \end{pmatrix}$$

est diagonalisable sur \mathbb{R} . Déterminer une matrice diagonale D et une matrice inversible P telles que $M=PDP^{-1}$.