EPITA 2017 MP, PC, PSI

Dans tout ce problème on désigne par α un nombre réel positif, et on se propose d'étudier la fonction f définie par l'intégrale suivante lorsque celle-ci est convergente :

$$f(\alpha) = \int_0^{+\infty} \frac{\sin(t)}{t^{\alpha}} dt.$$

On se propose d'approfondir dans la partie I l'absolue convergence, puis la convergence de l'intégrale $f(\alpha)$, ce qui permet d'obtenir le domaine de définition de f. Puis on étudie dans les parties II et III le comportement de f au voisinage de 0 et 2. Enfin, dans la partie IV (qui est indépendante des précédentes), on calcule f(1).

Partie I : Absolue convergence et convergence de l'intégrale $f(\alpha)$.

Dans cette partie, on étudie la convergence de $f(\alpha)$ à l'aide des deux intégrales suivantes :

$$I(\alpha) = \int_0^{\pi} \frac{\sin(t)}{t^{\alpha}} dt \quad ; \quad J(\alpha) = \int_{\pi}^{+\infty} \frac{\sin(t)}{t^{\alpha}} dt.$$

- 1°) Étude de la convergence de l'intégrale $I(\alpha)$
 - a) Donner un équivalent de la fonction $t \mapsto \frac{\sin(t)}{t^{\alpha}}$ quand t tend vers 0.
 - b) En déduire pour quelles valeurs du réel α l'intégrale $I(\alpha)$ est convergente.
- 2°) Étude de l'absolue convergence de l'intégrale $J(\alpha)$
 - a) Démontrer que l'intégrale $J(\alpha)$ est absolument convergente pour $\alpha > 1$.
 - b) Vérifier que la fonction $t \mapsto |\sin(t)|$ est π -périodique, et en déduire, pour tout entier k, la valeur de l'intégrale $\int_{k\pi}^{(k+1)\pi} |\sin(t)| dt$.
 - c) Démontrer l'encadrement suivant pour tout réel $\alpha \geqslant 0$ et tout entier $k \geqslant 1$:

$$\frac{2}{(k+1)^{\alpha}\pi^{\alpha}} \leqslant \int_{k\pi}^{(k+1)\pi} \frac{|\sin(t)|}{t^{\alpha}} dt \leqslant \frac{2}{k^{\alpha}\pi^{\alpha}}.$$

En déduire pour tout réel $\alpha \geqslant 0$ et tout entier $n \geqslant 2$ que :

$$\frac{2}{\pi^{\alpha}} \sum_{k=2}^{n} \frac{1}{k^{\alpha}} \leqslant \int_{\pi}^{n\pi} \frac{|\sin(t)|}{t^{\alpha}} dt \leqslant \frac{2}{\pi^{\alpha}} \sum_{k=1}^{n-1} \frac{1}{k^{\alpha}}.$$

- d) Préciser pour quelles valeurs du réel α l'intégrale $J(\alpha)$ est absolument convergente.
- 3°) Étude de la convergence de l'intégrale $J(\alpha)$
 - a) Étudier la convergence de l'intégrale J(0).
 - b) Démontrer la relation suivante pour tout réel $\alpha > 0$ et tout réel $x \ge \pi$:

$$\int_{\pi}^{x} \frac{\sin(t)}{t^{\alpha}} dt = -\frac{1}{\pi^{\alpha}} - \frac{\cos(x)}{x^{\alpha}} - \alpha \int_{\pi}^{x} \frac{\cos(t)}{t^{\alpha+1}} dt.$$

c) Calculer (en justifiant son existence) l'intégrale $\int_{\pi}^{+\infty} \frac{1}{t^{\alpha+1}} dt$ pour $\alpha > 0$. En déduire l'absolue convergence de l'intégrale $\int_{\pi}^{+\infty} \frac{\cos(t)}{t^{\alpha+1}} dt$ pour $\alpha > 0$.

- d) En déduire la convergence de l'intégrale $J(\alpha)$ pour $\alpha > 0$.
- 3°) Domaine de définition de la fonction fPréciser les domaines de convergence et d'absolue convergence de l'intégrale $f(\alpha)$. En déduire le domaine de définition de la fonction f introduite dans le préambule. Dans toute la suite, on suppose que le paramètre α appartient à ce domaine de définition.

Partie II : Étude de $f(\alpha)$ quand α tend vers 0.

On se propose dans cette partie d'étudier $f(\alpha)$ lorsque α tend vers 0 et on écrit à cet effet :

$$f(\alpha) = \int_0^{+\infty} \frac{\sin(t)}{t^{\alpha}} dt = \int_0^{\pi/2} \frac{\sin(t)}{t^{\alpha}} dt + \int_{\pi/2}^{+\infty} \frac{\sin(t)}{t^{\alpha}} dt.$$

- 5°) Limite de l'intégrale $\int_0^{\pi/2} \frac{\sin(t)}{t^{\alpha}} dt$
 - a) Justifier l'inégalité $0 \le \sin(t) \le t$ pour $0 \le t \le \frac{\pi}{2}$.
 - b) En déduire à l'aide du théorème de convergence dominée (dont on précisera l'énoncé et dont on vérifiera les hypothèses) la valeur de la limite suivante :

$$\lim_{\alpha \to 0} \int_0^{\pi/2} \frac{\sin(t)}{t^{\alpha}} \, \mathrm{d}t.$$

- 6°) Limite de l'intégrale $\int_{\pi/2}^{+\infty} \frac{\sin(t)}{t^{\alpha}} dt$
 - a) À l'aide d'une double intégration par parties, justifier l'égalité suivante :

$$\int_{\pi/2}^{+\infty} \frac{\sin(t)}{t^{\alpha}} dt = \frac{\alpha}{(\pi/2)^{\alpha+1}} - \alpha(\alpha+1) \int_{\pi/2}^{+\infty} \frac{\sin(t)}{t^{\alpha+2}} dt.$$

- **b)** Calculer l'expression $\alpha(\alpha+1)\int_{\pi/2}^{+\infty} \frac{1}{t^{\alpha+2}} dt$, puis déterminer sa limite quand α tend vers 0. En déduire la limite de $\alpha(\alpha+1)\int_{\pi/2}^{+\infty} \frac{\sin(t)}{t^{\alpha+2}} dt$, puis de $\int_{\pi/2}^{+\infty} \frac{\sin(t)}{t^{\alpha}} dt$, quand α tend vers 0.
- c) Déduire de cette question et de la précédente la limite de $f(\alpha)$ lorsque α tend vers 0. Peut-on obtenir cette limite par application directe du théorème de convergence dominée à l'intégrale $f(\alpha)$?

Partie III : Étude de $f(\alpha)$ quand α tend vers 2.

- 7°) Une autre expression de la fonction f
 - a) Démontrer la convergence de l'intégrale suivante pour $0 < \alpha < 2$:

$$\int_0^{+\infty} \frac{1 - \cos(t)}{t^{\alpha + 1}} \, \mathrm{d}t.$$

b) À l'aide d'une intégration par parties justifiée, établir que :

$$f(\alpha) = \alpha \int_0^{+\infty} \frac{1 - \cos(t)}{t^{\alpha + 1}} dt.$$

En déduire que la fonction f est à valeurs strictement positives sur]0,2[.

 8°) Limite de $f(\alpha)$ quand α tend vers 2.

On considère la fonction auxiliaire φ définie pour $t \in \mathbb{R}^*$ par $\varphi(t) = \frac{1 - \cos(t)}{t^2}$.

- a) Quelle est la limite L de $\varphi(t)$ lorsque t tend vers 0? On posera désormais $\varphi(0) = L$, de sorte que φ est ainsi définie et continue sur \mathbb{R} .
- b) Montrer que la fonction φ reste strictement positive sur $[0, \pi]$ et justifier qu'elle admet sur $[0, \pi]$ un minimum strictement positif noté μ (qu'on ne demande pas d'expliciter).
- c) Établir les inégalités suivantes :

$$f(\alpha) \geqslant \alpha \int_0^{\pi} \frac{1 - \cos(t)}{t^{\alpha + 1}} dt \geqslant \alpha \mu \frac{\pi^{2 - \alpha}}{2 - \alpha}.$$

d) En déduire la limite de $f(\alpha)$ quand α tend vers 2 par valeurs inférieures.

Partie IV : Calcul de l'intégrale f(1)

- 9°) Calcul d'intégrales auxiliaires
 - a) Justifier pour tout entier naturel n l'existence de l'intégrale suivante :

$$I_n = \int_0^{\pi/2} \frac{\sin((2n+1)t)}{\sin(t)} dt.$$

- **b)** Préciser la valeur de I_0 et prouver que l'on a $I_n I_{n-1} = 0$ pour tout entier $n \ge 1$. En déduire la valeur de l'intégrale I_n .
- c) On considère la fonction auxiliaire ψ définie pour $0 < t \le \frac{\pi}{2}$ par $\psi(t) = \frac{1}{\sin(t)} \frac{1}{t}$. Quelle est la limite L de $\psi(t)$ lorsque t tend vers 0? On posera désormais $\psi(0) = L$, de sorte que φ est ainsi définie et continue sur $[0, \frac{\pi}{2}]$.
- d) Démontrer l'égalité suivante pour tout entier naturel n:

$$\int_0^{\pi/2} \psi(t) \sin((2n+1)t) dt = \frac{\pi}{2} - \int_0^{(2n+1)\pi/2} \frac{\sin(u)}{u} du.$$

 10°) Lemme de Riemann-Lebesgue pour les fonctions de classe \mathcal{C}^1

On considère une fonction g de classe \mathcal{C}^1 du segment $[0, \frac{\pi}{2}]$ dans \mathbb{R} .

À tout entier naturel n, on associe l'intégrale suivante :

$$u_n = \int_0^{\pi/2} g(t) \sin((2n+1)t) dt.$$

a) Démontrer que :

$$u_n = \frac{g(0)}{2n+1} + \frac{1}{2n+1} \int_0^{\pi/2} g'(t) \cos((2n+1)t) dt.$$

- b) A l'aide d'une majoration convenable de cette dernière intégrale, en déduire la limite de u_n quand n tend vers $+\infty$.
- c) En admettant, ce que l'on ne demande pas de vérifier ici, que la fonction continue ψ introduite à la question 9.c) est de classe C^1 sur $\left[0, \frac{\pi}{2}\right]$, en déduire la valeur de f(1).