Pour Mardi.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels. on s'intéresse à la propriété suivante :

$$(P) \quad u_n \sim_{+\infty} \frac{1}{n} \Longleftrightarrow u_n + u_{n+1} \sim_{+\infty} \frac{2}{n}$$

- 1. Montrer que l'implication de gauche à droite est toujours vérifiée.
- 2. On suppose que $(u_n)_{n\in\mathbb{N}}$ est monotone. Montrer que la propriété (P) est réalisée.
- 3. La propriété (P) est elle vraie pour toute suite? On pourra considérer

$$u_n = (-1)^n \frac{1}{\sqrt{n}} + \frac{1}{n}.$$

remarque pour la question 2 traiter le cas croissant par exemple, et écrire des encadrements de $2u_n$.

pour mercredi

Partie principale quand n tend vers $+\infty$ de $u_n = \sum_{k=1}^n \sin \frac{1}{(n+k)^2}$.

1. Montrer par la méthode que vous voulez :

$$\forall x \in [0, 1], \ x - \frac{x^3}{6} \le \sin x \le x.$$

- 2. En déduire un encadrement de $\sum_{k=1}^{n} \sin \frac{1}{(n+k)^2}$ à l'aide d'autres sommes.
- 3. En écrivant $\sum_{k=1}^{n} \frac{1}{(n+k)^2}$ à l'aide d'une somme de Riemman montrer que :

$$\sum_{k=1}^{n} \frac{1}{(n+k)^2} = \frac{1}{2n} + o(\frac{1}{n}).$$

Indication : $\frac{1}{n} \sum_{k=1}^{n} \frac{1}{(1+\frac{k}{n})^2} = \frac{1}{n} \left(\int_0^1 \frac{1}{(1+x)^2} dx + o(1) \right)$ au voisinage de $+\infty$

4. Montrer à l'aide d'une majoration grossière :

$$0 \le \sum_{k=1}^{n} \frac{1}{6(n+k)^6} \le \frac{1}{6n^5},$$

5. Conclure que

$$\sum_{k=1}^{n} \sin \frac{1}{(n+k)^2} \underset{n \to +\infty}{\sim} \frac{1}{2n}.$$

Pour Jeudi

Soit $(a_n)_{n\geqslant 0}$ une suite définie par $a_0\in\mathbb{R}^{+\star}$ et pour $n\in\mathbb{N}$,

$$a_{n+1} = 1 - e^{-a_n}$$

PLD 1

- a) Etudier la convergence de la suite (a_n) .
- b) Déterminer la nature de la série de terme général $(-1)^n a_n$.
- c) Déterminer la nature de la série de terme général a_n^2 .
- d) Déterminer la nature de la série de terme général a_n à l'aide de la série

$$\sum \ln \left(\frac{a_{n+1}}{a_n} \right)$$

Pour vendredi

I)

La suite réelle $(u_n)_{n\in\mathbb{N}}$ est définie par $u_0 \geq 0$ et $u_n = \sqrt{n + u_{n-1}}$ si $n \geq 1$.

- 1) Montrer que, pour tout $a \ge 0$, $\sqrt{a} \le \frac{1}{2}(1+a)$.
- 2) Prouver que $\sqrt{n} \le u_n \le n + \frac{u_0}{2^n}$.
- 3) Démontrer que $u_n \sim \sqrt{n}$.
- 4) Soit $w_n = u_n \sqrt{n}$. Établir que la suite $(w_n)_{n \in \mathbb{N}}$ admet une limite L à préciser.
- II) a) Justifier la convergence de la série numérique

$$\sum_{k\geqslant 1} \frac{(-1)^k}{k}$$

On pose

$$R_n = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k}$$

b) Montrer que

$$R_n + R_{n+1} = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k(k+1)}$$

- c) Déterminer un équivalent de R_n .
- d) Donner la nature de la série de terme général R_n .

PLD 2