Pour Mardi

Soit $E = \mathbb{R}[X]$ l'espace vectoriel des polynômes, et $f: E \to E$ définie par :

$$\forall P \in E, \ f(P)(X) = \frac{P(-X) - P(X)}{2}.$$

- 1. Montrer que $f \in L(E)$
- 2. Montrer que $E = \operatorname{Im} f \bigoplus \operatorname{Ker}(f)$ et $f^2 = -f$.
- 3. Soit g un endormorphisme qui vérifie $g^2 + g = 0$, montrer que $E = \text{Ker}(g + Id_E) \bigoplus \text{Ker}(g)$

Pour Mercredi

On désigne par E l'espace vectoriel \mathbb{R}^n . Pour tout endomorphisme de E, on note $\mathrm{Ker}(u)$ le noyau de u et $\mathrm{Im}(u)$ l'image de u.

On rappelle qu'un sous-espace vectoriel V de E est stable par u si et seulement si $u(V)\subset V$

1. Soient u, v des endomorphismes de E qui commutent $u \circ v = v \circ u$. Démontrer que $\mathrm{Ker}(u)$ et $\mathrm{Im}(u)$ sont stables par v.

Dans la suite u désigne un endomorphisme qui vérifie $u^2 = 0$.

- 2. Démontrer que $\operatorname{Im}(u) \subset Ker(u)$
- 3. En déduire une inégalité sur le rang.
- 4. On suppose ici que n=2, soit $E=\mathbb{R}^2$. On suppose aussi que u est non nul.
 - (a) Démontrer qu'il existe une droite D dans E telle que Ker(u) = Im(u) = D.
 - (b) Soit v un endomorphisme de E tel que $v^2 = 0$ et $u \circ v = v \circ u$.
 - i. Démontrer que $v(D) \subset D$.
 - ii. Démontrer que $u \circ v = 0$.
 - (c) Soient v et w deux endomorphismes de E tels que $v^2=0, w^2=0, u\circ v=v\circ u$ et $u\circ w=w\circ u$. Démontrer que $v\circ w=0$
- 5. On revient au cas général. Soit m un entier naturel ≥ 2 . Soient u_1, \ldots, u_m des endomorphismes de E tels que :

$$\forall (i,j) \in \{1,\ldots,m\}^2, u_i^2 = 0 \text{ et } u_i \circ u_j = u_j \circ u_i.$$

On pose $F_1 = Im(u_1)$ et pour un entier i compris entre 2 et m, $F_i = Im(u_1 \circ u_2 \circ \cdots \circ u_{i-1} \circ u_i)$.

- (a) Démontrer que, pour tout entier i compris entre 1 et m-1, F_i est un sous espace vectoriel stable par u_{i+1} .
- (b) En déduire que, pour tout entier i compris entre 1 et m, F_i est de dimension au plus $\frac{n}{2^i}$.
- (c) Dans le cas où $n < 2^m$, démontrer que l'endomorphisme $u_1 \circ u_2 \circ \cdots \circ u_m = 0$.

1 Pour Jeudi

- 1. Soit E un \mathbb{K} espace vectoriel de dimension n et f un endomorphisme de E vérifiant : $\operatorname{Ker} f = \operatorname{Im} f$.
 - (a) Montrer que nécessairement n est un entier pair et déterminer le rang de f en fonction de n.

PLD 1

- (b) Montrer que, $f \circ f = 0$
- 2. Soit f un endomorphisme de E vérifiant $f \circ f = 0$ et $\dim E = 2 \operatorname{rg}(f)$.
 - (a) Montrer que $\operatorname{Im}(f) \subset \operatorname{Ker} f$.
 - (b) En déduire que Ker f = Im f.
- 3. On suppose $n \ge 1$. Soit f un endomorphisme de E vérifiant Ker f = Im f, p = rg f = Dim(Ker f) et q = n p.

Soit F un supplémentaire de Kerf dans E et soit $(e_1,e_2,..,e_q)$ une base de F.

- (a) Montrer que la famille $(f(e_1), ..., f(e_q))$ est une base de Im f.
- (b) Posons, pour tout entier i compris entre 1 et q, $e_{q+i} = f(e_i)$; calculer $f(e_{q+i})$.
- (c) Montrer que la famille $(e_1, e_2, ..., e_q, e_{q+1}, ..., e_{2q})$ est une base de E et écrire la matrice de f dans cette base.
- 4. **Application :** Soit E un \mathbb{K} -espace vectoriel de dimension 4 de base $\mathcal{B} = (e_1, e_2, e_3, e_4)$ et soit f l'endomorphisme de E dont la matrice dans la base \mathcal{B} est :

$$A = \left(\begin{array}{cccc} 0 & -1 & -1 & 0 \\ -1 & 0 & 0 & -1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{array}\right)$$

- (a) Déterminer, en fonction des vecteurs de la base $\mathcal B$, une base de Kerf et une base de Im(f) et sans aucun calcul déterminer A^2 .
- (b) Montrer qu'il existe une base \mathcal{B}' de E dans laquelle la matrice de f est triangulaire .
- (c) Déterminer les vecteurs d'une telle base \mathcal{B}' en fonction des vecteurs de la base de \mathcal{B}

2 Pour vendredi

Soient E un \mathbb{R} -espace vectoriel de dimension finie et u un endomorphisme de E vérifiant

$$u^3 + u = 0$$

- a) Montrer que l'espace Im u est stable par u.
- b) Pour $x \in \text{Im} u$, calculer $u^2(x)$
- c) Soit v l'endomorphisme induit par u sur Im u.

Montrer que v est un isomorphisme.

d) En déduire que le rang de l'endomorphisme u est un entier pair.

PLD 2