Programme de colles de mathématiques MP2

Semaine 13:16 au 20 décembre 2024

Questions de cours

- □ Comme d'habitude, savoir citer toute définition, toute proposition du cours.
- \square Montrer que $\lim_{n\to+\infty}\int_0^1 f(t)e^{int} dt$
 - d'abord dans le cas où $f \in \mathcal{C}^1([0,1],\mathbb{C})$;
 - puis dans le cas où $f \in \mathcal{C}([0,1],\mathbb{C})$.
- \square Soit (f_n) une suite de fonctions de A dans F. On suppose que
 - $\forall n \in \mathbb{N}, f_n \text{ est continue en } a \in A;$
 - (f_n) converge uniformément vers f sur A.

Montrer que f est continue en a.

- \square Soit $f \in \mathcal{C}([0,1],\mathbb{R})$ telle que pour tout $n \in \mathbb{N}$, $\int_0^1 x^n f(x) \, \mathrm{d}x = 0$. Montrer que f est nulle sur [0,1].
- \square Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_1^{+\infty} \frac{1+t^n}{1+t^{n+2}} dt$. Montrer que la suite (I_n) converge et calculer sa limite.
- \square Pour tout $n \in \mathbb{N}^*$, on pose $J_n = \int_0^{+\infty} \frac{n \cos(x)}{n^2 + x^4} dx$. Montrer que la suite (J_n) converge vers 0.

Chapitre 14 : Suites de fonctions

Soient E et F des espaces vectoriels normés de dimension finie. Les fonctions sont définies sur une partie A de E et à valeurs dans F (en pratique, F sera très souvent \mathbb{R} ou \mathbb{C}).

I Modes de convergence

I.1 Convergence simple

- convergence simple d'une suite de fonctions (f_n) .
- on constate que la limite simple d'une suite de fonctions continues n'est pas nécessairement continue.

I.2 Convergence uniforme

- convergence uniforme d'une suite de fonctions (f_n) . Pour des fonctions bornées, convergence en norme $\|\cdot\|_{\infty}$.
- dessin illustrant la convergence uniforme (pour des fonctions de \mathbb{R} dans \mathbb{R}).
- si (f_n) converge uniformément vers f, alors (f_n) converge simplement vers f. La réciproque est fausse.
- pour montrer la convergence uniforme de (f_n) : on recherche d'abord via une convergence simple une fonction f candidate pour être la limite, puis on cherche à montrer que pour tous x et n, $||f_n(x) f(x)||_F \leq M_n$, où M_n ne dépend pas de x et tend vers 0 lorsque $n \to +\infty$.
- convergence uniforme de (f_n) vers f au voisinage de a.

I.3 Approximation uniforme par des fonctions en escalier

• pour toute fonction f continue par morceaux sur [a,b] à valeurs dans F, il existe une suite (φ_n) de fonctions en escalier qui converge uniformément vers f. Reformulation en terme de partie dense.

I.4 Approximation uniforme par des fonctions polynomiales

- théorème de Weierstrass : pour toute fonction f continue sur [a, b] à valeurs dans \mathbb{R} ou \mathbb{C} , il existe une suite (φ_n) de fonctions polynomiales qui converge uniformément vers f. Reformulation en terme de partie dense.
- on insiste sur le fait que ce théorème vaut pour une fonction continue et sur un segment.

II Propriétés de la limite d'une suite de fonctions

II.1 Continuité de la fonction limite

- Continuité en un point. Soit (f_n) une suite de fonctions de A dans F. On suppose que
 - * $\forall n \in \mathbb{N}, f_n \text{ est continue en } a \in A;$
 - * (f_n) converge uniformément vers f au voisinage de a.

Alors

- $\triangleright f$ est continue en a.
- Continuité sur A. On suppose que
 - * $\forall n \in \mathbb{N}, f_n \text{ est continue sur } A;$
 - * (f_n) converge uniformément vers f sur A.

Alors

 $\triangleright f$ est continue sur A.

II.2 Limite en un point de la fonction limite

- Théorème de la double-limite. Soit (f_n) une suite de fonctions de A dans F. Soit a un point (fini ou infini) adhérent à A. On suppose que
 - * $\forall n \in \mathbb{N}, \lim_{x \to a} f_n(x) = l_n \in F;$
 - * (f_n) converge uniformément vers f sur A.

Alors

- \triangleright (l_n) converge;
- $\triangleright f$ admet une limite finie en a;
- \triangleright ces deux limites sont égales : $\lim_{n \to +\infty} \lim_{x \to a} f_n(x) = \lim_{x \to a} \lim_{n \to +\infty} f_n(x)$.

II.3 Primitive de la fonction limite

- Théorème de primitivation. Soit (f_n) une suite de fonctions de I (intervalle de \mathbb{R}) dans F. On suppose que
 - * $\forall n \in \mathbb{N}, f_n \text{ est continue sur } I;$
 - * (f_n) converge uniformément vers f sur tout segment de I.

Alors, en posant $g_n: x \mapsto \int_a^x f_n(t) dt$ et $g: x \mapsto \int_a^x f(t) dt$,

- \triangleright (g_n) converge uniformément vers g sur tout segment de I.
- Théorème d'intégration sur un segment. Soit (f_n) une suite de fonctions de [a, b] dans F. On suppose que
 - * $\forall n \in \mathbb{N}, f_n \text{ est continue sur } [a, b];$
 - * (f_n) converge uniformément sur [a, b].

Alors

$$\lim_{n \to +\infty} \int_a^b f_n(t) dt = \int_a^b \lim_{n \to +\infty} f_n(t) dt.$$

II.4 Dérivée de la fonction limite

- Théorème de dérivation. Soit (f_n) une suite de fonctions de I (intervalle de \mathbb{R}) dans F. On suppose que
 - * $\forall n \in \mathbb{N}, f_n \text{ est de classe } \mathcal{C}^1 \text{ sur } I;$
 - * (f_n) converge simplement vers f sur I;
 - * (f'_n) converge uniformément vers g sur tout segment de I.

Alors

- $\triangleright f$ est de classe \mathcal{C}^1 sur I;
- $\forall x \in I, \ f'(x) = g(x).$
- $\triangleright (f_n)$ converge uniformément vers f sur tout segment de I.
- Théorème pour les dérivées supérieures. Soit $p \ge 1$. On suppose que
 - * $\forall n \in \mathbb{N}, f_n \text{ est de classe } \mathcal{C}^p \text{ sur } I;$
 - * $\forall k \in [0, p-1], (f_n^{(k)})$ converge simplement sur I;
 - * $(f_n^{(p)})$ converge uniformément sur tout segment de I.

Alors, en notant f la limite simple de (f_n) ,

- $\triangleright f$ est de classe \mathcal{C}^p sur I;
- $\forall k \in [0, p], \ \forall x \in I, \ f^{(k)}(x) = \lim_{n \to +\infty} f_n^{(k)}(x).$

III Théorème de convergence dominée

- Soit (f_n) une suite de fonctions de I (intervalle de \mathbb{R}) dans \mathbb{K} . On suppose que
 - * $\forall n \in \mathbb{N}, f_n \text{ est continue par moreaux sur } I;$
 - * (f_n) converge simplement sur I vers une fonction f continue par morceaux sur I;
 - * il existe une fonction $\varphi: I \to \mathbb{R}_+$ intégrable sur I telle que : $\forall n \in \mathbb{N}, \ \forall t \in I, \ |f_n(t)| \leq \varphi(t)$.

Alors

- $\forall n \in \mathbb{N}, f_n \text{ est intégrable sur } I;$
- $\triangleright f$ est intégrable sur I;
- $\operatorname{inim}_{n \to +\infty} \int_I f_n(t) \, \mathrm{d}t = \int_I \lim_{n \to +\infty} f_n(t) \, \mathrm{d}t.$

À suivre la semaine prochaine :

Séries de fonctions.