Programme de colles de mathématiques MP2

Semaine 20: 3 au 7 mars 2025

Questions de cours

- □ Comme d'habitude, savoir citer toute définition, toute proposition du cours.
- \square Soit $X \sim \mathcal{B}(3, \frac{1}{4})$. Calculer $\mathbb{P}(X = k)$ pour tout $k \in X(\Omega)$. Déterminer la loi conditionnelle de X sachant que X est un nombre pair.
- \square Soit $X \sim \mathcal{G}(p)$, où $p \in [0,1[$. Énoncer et montrer la propriété d'absence de mémoire.
- \square Soit $(p_n)_{n\in\mathbb{N}^*}$ une suite telle que $\lim_{n\to+\infty} np_n = \lambda$, où $\lambda > 0$. Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires telles que, pour tout $n\in\mathbb{N}^*$, $X_n\sim\mathcal{B}(n,p_n)$. Calculer, pour tout $k\in\mathbb{N}$, $\lim_{n\to+\infty}\mathbb{P}(X_n=k)$.
- \square Une urne contient trois boules, numérotées 1, 2 et 3. On effectue deux tirages successifs avec remise. On note X_1 le numéro de la première boule piochée et Y le maximum des deux boules piochées. Déterminer la loi conjointe de (X_1, Y) et en déduire la loi marginale de Y.
- \square Soient X et Y deux variables indépendantes définies sur $(\Omega, \mathcal{A}, \mathbb{P})$ telles que $X_1 \sim \mathcal{G}(p_1), X_2 \sim \mathcal{G}(p_2),$ où $p_1, p_2 \in]0, 1[$. Déterminer la loi de $\max(X, Y)$.
- □ Soient X et Y deux variables indépendantes définies sur $(Ω, A, \mathbb{P})$ telles que $X_1 \sim \mathcal{P}(λ), X_2 \sim \mathcal{P}(\mu)$, où λ > 0 et μ > 0. Déterminer la loi de X + Y.
- \square Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires i.i.d. de loi $\mathcal{B}(p)$ définies sur $(\Omega, \mathcal{A}, \mathbb{P})$. On pose

$$\forall \omega \in \Omega, \ T(\omega) = \begin{cases} \min\{i \in \mathbb{N}^* \mid X_i(\omega) = 1\} & \text{si cet ensemble est non vide} \\ +\infty & \text{sinon.} \end{cases}$$

Montrer que T est une variable aléatoire et déterminer la loi de T.

Chapitre 21 : Espaces probabilisés

Révisions.

Chapitre 22 : Variables aléatoires discrètes

I Loi d'une variable aléatoire

I.1 Variable aléatoire discrète

- une variable aléatoire discrète sur (Ω, \mathcal{A}) est une application $X : \Omega \to E$ telle que $X(\Omega)$ est au plus dénombrable et, pour tout $x \in X(\Omega)$, $X^{-1}(\{x\}) \in \mathcal{A}$.
- notation (X=x) ou $\{X=x\}$ pour l'événement $X^{-1}(\{x\})$.
- notation $(X \in A)$ ou $\{X \in A\}$ pour $X^{-1}(A)$, qui est un événement.

Lycée Pothier - MP2 Programme de colle

Dans la suite, toutes les variables aléatoires sont supposées discrètes.

- $(\{X=x\})_{x\in X(\Omega)}$ est un système complet d'événements.
- conséquence de la formule des probabilités totales : pour tout $A \subset X(\Omega)$, $\mathbb{P}(X \in A) = \sum_{x \in A} \mathbb{P}(X = x)$. En particulier, $\sum_{x \in X(\Omega)} \mathbb{P}(X = x) = 1$.

I.2 Loi d'une variable aléatoire

- l'application $A \mapsto \mathbb{P}(X \in A)$ est une probabilité sur $(X(\Omega), \mathcal{P}(X(\Omega)))$, appelée loi de X.
- la loi de X est déterminée de manière unique par la distribution de probabilités $(\mathbb{P}(X=x))_{x\in X(\Omega)}$.
- si $(p_x)_{x\in E}$ est une distribution de probabilités discrètes de support E, alors il existe un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$ et une variable aléatoire X telle que $X(\Omega) = E$ et, pour tout $x \in E$, $\mathbb{P}(X = x) = p_x$.
- X et Y suivent la même loi si $X(\Omega) = Y(\Omega)$ et, pour tout $k \in X(\Omega)$, $\mathbb{P}(X = k) = \mathbb{P}(Y = k)$. Notation $X \sim Y$.

I.3 Variable aléatoire f(X)

- f(X) est une variable aléatoire de loi donnée par $f(X(\Omega))$ et, pour tout $y \in f(X(\Omega))$, $\mathbb{P}(f(X) = y) = \sum_{x \in f^{-1}(\{y\})} \mathbb{P}(X = x)$.
- si $X \sim Y$, alors $f(X) \sim f(Y)$.

I.4 Loi conditionnelle de X sachant A

 \bullet si A est un événement de probabilité non nulle, définition de la loi conditionnelle de X sachant A.

II Lois usuelles

II.1 Loi certaine

• X suit une loi certaine (ou X est presque-sûrement constante) s'il existe a tel que $\mathbb{P}(X=a)=1$.

II.2 Loi uniforme

- si E est un ensemble fini, définition de la loi uniforme sur E. Notation $X \sim \mathcal{U}(E)$.
- situations pratiques où cette loi intervient.
- il n'existe pas de loi uniforme sur \mathbb{N} .

II.3 Loi de Bernoulli

- définition de la loi de Bernoulli de paramètre $p \in [0,1]$. Notation $X \sim \mathcal{B}(p)$.
- exemple de la variable aléatoire $\mathbbm{1}_A,$ où A est un événement.

II.4 Loi binomiale

- définition de la loi binomiale de paramètres $n \in \mathbb{N}^*$ et $p \in [0,1]$. Notation $X \sim \mathcal{B}(n,p)$.
- la loi binomiale $\mathcal{B}(1,p)$ coïncide avec la loi de Bernoulli $\mathcal{B}(p)$.
- si on répète n fois de manière indépendante une même expérience de probabilité de succès égale à p, et si X désigne le nombre de succès, alors $X \sim \mathcal{B}(n, p)$.

Lycée Pothier - MP2 Programme de colle

II.5 Loi géométrique

- définition de la loi géométrique de paramètre $p \in [0,1[$. Notation $X \sim \mathcal{G}(p)$.
- si on répète de manière indépendante une même expérience de probabilité de succès égale à p, et si X désigne le temps d'attente du premier succès, alors $X \sim \mathcal{G}(p)$.

II.6 Loi de Poisson

- définition de la loi de Poisson de paramètre $\lambda \in \mathbb{R}_+^*$. Notation $X \sim \mathcal{P}(\lambda)$.
- approximation de la loi binomiale par une loi de Poisson. Interprétation de la loi de Poisson comme une loi d'événements rares.

III Familles de variables aléatoires

III.1 Couples de variables aléatoires

- si X et Y sont des variables aléatoires, alors f(X,Y) est aussi une variable aléatoire. Exemple de la loi de X+Y.
- détermination, dans un exemple, de la loi de $\max(X, Y)$.

III.2 Loi conjointe, lois marginales

- loi conjointe du couple (X,Y). Déterminer la loi conjointe du couple (X,Y) revient à calculer $\mathbb{P}(X=x,Y=y)$ pour tout $x\in X(\Omega)$ et $y\in Y(\Omega)$.
- lois marginales du couple (X, Y).
- la loi conjointe permet de connaître les lois marginales, mais la réciproque est fausse.

III.3 Familles finies de variables aléatoires

- loi conjointe du *n*-uplet (X_1, \ldots, X_n) , lois marginales.
- détermination d'une loi marginale à partir de la loi conjointe.

IV Indépendance de variables aléatoires

IV.1 Couples de variables aléatoires indépendantes

- définition de X et Y indépendantes : $\forall A \subset X(\Omega), \forall B \subset Y(\Omega), \mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A)\mathbb{P}(Y \in B).$ Notation $X \perp \!\!\! \perp Y$.
- X et Y sont indépendantes si et seulement si : $\forall x \in X(\Omega), \ \forall y \in Y(\Omega), \ \mathbb{P}(X=x,Y=y) = \mathbb{P}(X=x)\mathbb{P}(Y=y).$
- si on connaît les lois marginales de X et de Y et si X et Y sont indépendantes, alors on connaît la loi conjointe de (X,Y).
- si $X \perp \!\!\!\perp Y$, alors $f(X) \perp \!\!\!\perp g(Y)$.

IV.2 Familles finies de variables aléatoires indépendantes

- définition de X_1, \ldots, X_n (mutuellement) indépendantes : $\forall A_1 \subset X_1(\Omega), \ldots, \forall A_n \subset X_n(\Omega), \mathbb{P}(X_1 \in A_1, \ldots, X_n \in A_n) = \mathbb{P}(X_1 \in A_1) \cdots \mathbb{P}(X_n \in A_n).$
- si X_1, X_2, \ldots, X_n sont indépendantes, alors $f_1(X_1), f_2(X_2), \ldots, f_n(X_n)$ le sont aussi.
- lemme des coalitions : si X_1, X_2, \ldots, X_n sont indépendantes, alors pour tout $p, f(X_1, \ldots, X_p)$ et $g(X_{p+1}, \ldots, X_n)$ sont indépendantes.
- somme de n variables aléatoires indépendantes de loi de Bernoulli $\mathcal{B}(p)$.

IV.3 Suite i.i.d.

- on dit que les variables aléatoires X_n , $n \in \mathbb{N}^*$ sont indépendantes si pour toute partie finie I de \mathbb{N} , les X_i , $i \in I$, sont indépendantes.
- suite $(X_n)_{n\in\mathbb{N}}$ de variables aléatoires indépendantes et identiquement distribuées (i.i.d.) : les variables sont indépendantes et toutes de même loi.
- existence d'un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$ et d'une suite $(X_n)_{\in \mathbb{N}}$ de variables aléatoires indépendantes suivant des lois fixées. Modélisation du jeu de pile/face (infini).

À suivre la semaine prochaine :

Espérance, variance, Markov, Bienaymé-Tchebychev, loi des grands nombres, fonctions génératrives.