La série de Pfund de l'atome d'hydrogène correspond à une transition vers le niveau d'énergie n=5.

- 1. Calculer la longueur d'onde $\lambda_{7\to5}$ associée à la transition du niveau 7 vers le niveau 5.
- 2. A quelles transitions correspondent les longueurs d'onde maximale et minimale de cette série? Déterminer leurs valeurs.
 - 3. A quelle transition correspond la longueur d'onde $\lambda = 2872nm$?

Ephoton =
$$\varepsilon_p - \varepsilon_n = -\frac{\varepsilon_0}{p^2} - \left(-\frac{\varepsilon_0}{n^2}\right) = \varepsilon_0 \left(\frac{1}{n^2} - \frac{1}{p^2}\right)$$

et ε_p beton = $h \cup \frac{h \cdot c}{\lambda}$ = $\lambda_p - n = \frac{h \cdot c}{\varepsilon_0} = \frac{1}{\sqrt{n^2 - n^2}}$

2. Amad correspond à Ephoton minimale, donc à une transition 6-15

Ansn => Ephoton mad, donc transstron as -> 5

A.N: Amad = 7470 nm larn = 2282 nm

3. On represent $\lambda = \frac{h_c}{E_0} \frac{1}{1/25 - \frac{1}{9^2}} \left(\cos n = 5 \right) \Rightarrow \frac{1}{25} - \frac{1}{9^2} = \frac{h_c}{\lambda E_0} \Rightarrow \frac{1}{\rho^2} = \frac{1}{25} - \frac{h_c}{\lambda E_0}$

En utilisant l'inégalité de Heisenberg position - impulsion, retrouver l'énergie minimale d'un oscillateur harmonique $E_0 = \hbar \omega_0/2$.

Rouisonnement analogue à celui foit pour l'atome d'hisologiere:

$$E = \frac{p^2}{2m} + \frac{1}{2} \ln x^2 \quad \text{et} \quad \omega_0 = \sqrt{\frac{n}{2}} \quad \text{denc} \quad h = n \, \omega_0^2 = 0 \quad E = \frac{p^2}{2m} + \frac{m \, \omega_0^2}{2} \, x^2$$

on ope 3th donne, an intronum, p. 2 ~ t

On charche le valeur min. de E, donc de =0

$$d' = \frac{h}{2m} \left(-\frac{2}{2^2} \right) + \frac{m\omega^2}{2} \cdot 2n = 0 \Rightarrow \frac{h}{m} = m\omega^2 n^2 = \frac{h}{m\omega^2} \left(n^2 > 0 \right)$$

On injecte dans l'expression de E:

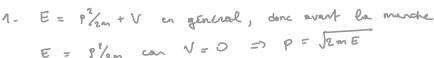
$$E_{N} = \frac{\pi^{2}}{2m} \cdot \frac{m \omega_{0}}{\pi} + \frac{m \omega_{0}^{2}}{2} \cdot \frac{\pi}{m \omega_{0}} = \pi \omega_{0}$$

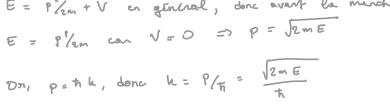
Donc Eo = two

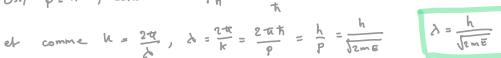
er n'est pas exactement le résultat attendu (Jacteur 2 --), mais il faut bien voir que theisenberg ne donne que des ordres de grandeur - si on tombe sur l'expression exacte, c'est pute une heuneure comeidence.

Un proton d'énergie E = 1 Mev aborde une marche de potentiel «haute» de $V_0 = 100 keV$.

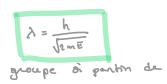
- 1. Avant la marche de potentiel, calculer la longueur d'onde et la vitesse du proton.
- 2. Même question «au dessus de la marche de potentiel».
- 3. Retrouver les expressions de la fonction d'onde associée au proton .
- 4. Calculer la probabilité pour le proton d'être réfléchi par la marche de potentiel.







On peut trouver la vitesse en tant que vitesse de groupe di partin de



(1)

 $E = P_{2m}^2$ s $t_{1}\omega = \frac{(t_{1}\omega)^2}{\epsilon_{1}m}$ et $v_{1}^2 = \frac{d\omega}{d\kappa}$, nors cela donne la même chese

que
$$V = \frac{P}{m}$$
, d'où $V = \frac{\sqrt{2m}}{m} = \sqrt{\frac{2E}{m}}$

A.N: 1 = 2,86.10 m Un= 1,38.10 m.s.

2. Hême principe, mous cette jois
$$V = Vo$$
 donc $E = P^2/2m + Vo = P = \sqrt{2m(G-Vo)}$
Il suffit de remplacer E por $E-Vo$ dons les formules précédentes -

A.N: 2=3,01.10-14 M V= 1,31.107 m.s-1

3. Avant le marche:
$$-\frac{h^2}{2m}\frac{d^2\ell}{dn\epsilon^2} = E\ell = 0$$
 $\frac{d^2\ell}{dn\epsilon^2} + \ln^2\ell = 0$ ower $\ln = \sqrt{2mE}$

solutions: Y(a) = An e That + Bye -The => \(\psi_{\alpha_1}(\pi_1) = A_1 e^{\frac{1}{2}} e^{-\frac{1}{2}} + B_1 e^{-\frac{1}{2}} e^{-\frac{1}{2}}

1

Après la marche:
$$-\frac{\pi^2}{2m} \frac{d^{2}\ell}{dn^{2}} + V\ell = E \ell = 9 \frac{d^{2}\ell}{dn^{2}} + h_{2}^{2}\ell = 0$$
 swee $\ln = \frac{\sqrt{2n(E-Vo)}}{\hbar}$

Solutions: (2(2) = A2 e ibra + B2 e iken

traduirait une pertraule venont de la hypotheses, donc Bz = 0

4. On represe les expressions calculles en cours (il est tout à fait conseillé de le regaine pour s'entrainer!):

T =
$$\frac{4}{(k_1+k_2)^2}$$
 = $\frac{4\sqrt{2mE/\hbar}\sqrt{2m(E-Vo)/\hbar}}{(\sqrt{2mE/\hbar}+\sqrt{2m(E-Vo)/\hbar})^2}$ = $\frac{4\sqrt{E(E-Vo)}}{(\sqrt{E}/\hbar)^2}$ = $\frac{4\sqrt{E}/\hbar}{(\sqrt{E}/\hbar)^2}$ = $\frac{4\sqrt{E(E-Vo$

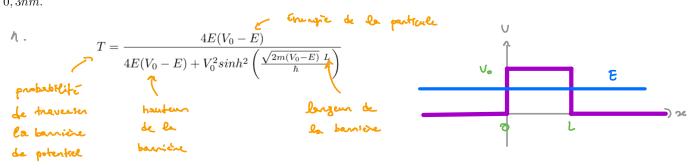
On donne, à propos de l'effet tunnel, le résultat suivant :

$$T = \frac{4E(V_0 - E)}{4E(V_0 - E) + V_0^2 \sinh^2\left(\frac{\sqrt{2m(V_0 - E)} L}{\hbar}\right)}$$

- 1. Expliquer ce que représentent les différentes grandeurs qui interviennent dans cette égalité.
- 2. Re-écrire cette expression en faisant intervenir un paramètre δ homogène à une longueur et expliquer sa signification physique.
- 3. Les microscopes à effet tunnel mettent en jeu des électrons avec les ordres de grandeur suivants : E = 60 meV et $V_0 = 5 eV$. Calculer numériquement δ pour ces valeurs. Calculer T pour ces valeurs et L = 0.1 nm.
- 4. Lorsque $L >> \delta$ on peut utiliser l'approximation de la barrière de potentiel épaisse. Montrer que l'on obtient la relation approchée :

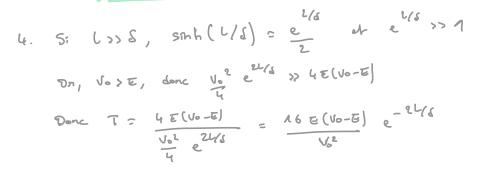
$$T = \frac{16E(V_0 - E)}{V_0^2} exp\left(\frac{-2L}{\delta}\right)$$

5. En prenant pour E et V_0 les valeurs de la question 3 (et toujours pour un électron), tracer T = f(L) en échelle log pour T avec et sans l'approximation de la barrière épaisse sur le même graphe, pour L variant entre 0 et 0,3nm.

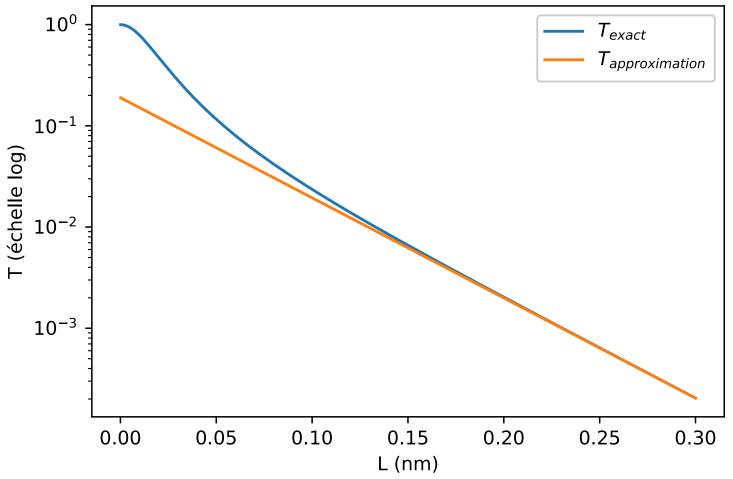


2. On pose
$$S = \frac{t_1}{\sqrt{2m(v_0 - E)}}$$
 et $T = \frac{4E(v_0 - E)}{4E(v_0 - E) + V_0^2 + Smh^2(\frac{1}{2}/S)}$

d'est l'ordre de grandem de la "pontée" de l'onde évanescente dans la bonnsère



approximation de la barrière épaisse (électron, $E=60meV,\ V_0=5eV$)

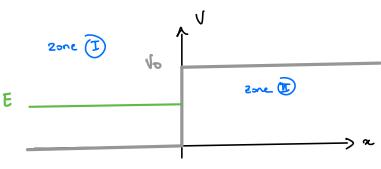


Montrer que la probabilité de réflexion d'une particule d'énergie E sur une marche de potentiel de hauteur V_0 est égale à 1 dans le cas où $E < V_0$.

· Dans le tone (I) 4 vérifie :

solutions: PI = A eiha + B e - iha

particule particule réfléchée



• Dans le rome (I),
$$\ell$$
 vénifie: $-\frac{\hbar^2}{2m}\frac{d^2p}{dm^2}$ + $V_0\ell=E\ell\ell=P$ $\frac{d^2\ell}{dm^2}-\ell^2\ell=D$ avec $\ell=\sqrt{2m(V_0-E)}$

Solutions: 45 = Ce + De

C'est donc un compontement évanuscent. On doit avoir 0 = 0, sonon

P, et done 1412 devenge pour or -1 +00.

Done 41 = C e - (2

e on where his continuités: $\ell_{\pm}(z=0) = \ell_{\pm}(z=0) \Rightarrow A+B=C$ (1)

$$dt \frac{dY_{\pm}}{dn}(n=0) = \frac{dY_{\pm}(n=0)}{dn} \Rightarrow ih(A-8) = -e^{C}$$

On Elimine C:
$$e(A+B) = -ih(A-B) = A(ih+e) = B(ih-e)$$

$$= 3 \frac{B}{A} = \frac{ih+e}{ik-e} = 3 \left| \frac{B}{A} \right| = 1$$

D'où
$$R = \frac{d-I}{dz} = \left|\frac{B}{R}\right|^2 = 1$$
. On a done bren $R = 1$ (at done $T = 0$):

le probabilté de niflexion vant 1, le pontroule est système trepresent reiglichie -

Un atome d'hydrogène est confiné à l'intérieur d'un puits de potentiel infiniment profond, de largeur L=2 nm selon (Ox): le puits correspond au domaine [0, L]. Son énergie est E et on admet que la fonction d'onde qui le décrit est donnée par :

$$\psi(x,t) = A \sin\left(\frac{3\pi x}{L}\right) e^{-i\frac{Et}{\hbar}} \quad \forall x \in [0,L]$$

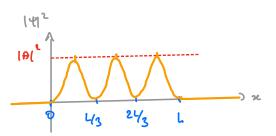
La fonction d'onde est nulle en dehors du puits.

- 1. A quel niveau d'énergie cette fonction d'onde correspond-elle? Calculer numériquement cette énergie.
- 2. Représenter graphiquement $|\psi|^2$ en fonction de x.
- 3. Déterminer la constante A.
- 4. Quelle est la probabilité de détecter l'atome entre les abscisses x = 0 et x = L/3?

1.
$$n = 3$$
 can $\Psi(x_1 +) = A sin \left(\frac{n \pi x}{L} \right) e^{-\frac{x}{L}}$ en général.

$$E = \frac{n^2 h^2}{8mL^2}$$
 $A \cdot N : E = 7,38.10^{-28} J = 0,46 meV$

2.



3.
$$A = \int_{\frac{\pi}{L}}^{2} \left(vu \text{ en couns} \right) \text{ en } \text{ in } \text{end} \int_{0}^{L} |\psi|^{2} d\pi = 1$$

con $|\psi|^{2} = |A|^{2} \sin^{2}\left(3\frac{\pi}{L}\pi\right) = \frac{|A|^{2}}{2} \left(1 - \cos\left(\frac{6\pi x}{L}\right)\right)$

$$= 1 - 2 \sin^{2} x = 1 - 2 \sin^{2} x$$

$$= 1 - 2 \sin^{2} x$$

$$= 1 - 2 \sin^{2} x$$

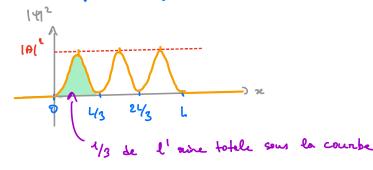
$$= 1 - 2 \sin^{2} x$$

$$dr \int_{0}^{L} \frac{\left|R\right|^{2} \left(A - \omega_{5}\left(\frac{6\pi\alpha_{5}}{L}\right)\right) dn}{2} = \frac{|A|^{2}}{2} \left(\underbrace{\int_{0}^{L} d\alpha_{5}}_{L} - \underbrace{\int_{0}^{L} \omega_{5}\left(\frac{6\pi\alpha_{5}}{L}\right) d\alpha_{5}}_{O}\right)$$

Donc
$$|\mathcal{H}|^2 = 1$$
, $|\mathcal{H}|^2 = \frac{2}{L}$ et donc $|\mathcal{H}| = \sqrt{\frac{2}{L}}$ on chotsit $A = \sqrt{\frac{2}{L}}$ (peu responte la phase)

4. $P(D \leq 2 \leq L(3)) = \int_0^{L(3)} |\psi|^2 dn$ ce qui donce $P(O \leq 2 \leq L(3)) = 1/3$ 3) à part le borne

on le voit facilement graphiquement:



On appelle boite de potentiel une situation où une particule est dans un puits de potentiel infini à 3 dimensions, c'est-à-dire que :

$$V(x, y, z) = \begin{cases} 0 \text{ si } 0 < x < L_x \text{ et } 0 < y < L_y \text{ et } 0 < z < L_z \\ \infty \text{ sinon} \end{cases}$$

On recherche des états stationnaires, et on admettra que la partie spatiale de la fonction d'onde $\Phi(x, y, z)$ peut s'écrire :

$$\Phi(x, y, z) = \phi_x(x) \ \phi_y(y) \ \phi_z(z)$$

- 1. Ecrire l'équation de Schrodinger vérifiée par $\Phi(x, y, z)$.
- 2. Mettre sous la forme d'une somme de 3 termes qui ne dépendent respectivement que de x, y et z et d'un terme constant. En déduire 3 équations différentielles vérifiées, respectivement, par $\phi_x(x)$, $\phi_y(y)$ et $\phi_z(z)$ (on posera $E = E_x + E_y + E_z$).
 - 3. En déduire la quantification de l'énergie de la particule :

$$E = \frac{h^2}{8m} \left(\left(\frac{n_x}{L_x} \right)^2 + \left(\frac{n_y}{L_y} \right)^2 + \left(\frac{n_z}{L_z} \right)^2 \right)$$

où n_x , n_y et n_z sont 3 entiers strictement positifs.

- 4. On se place dans le cas d'une boite cubique : $L_x = L_y = L_z = L$. Donner les expressions des 6 premiers niveaux d'énergie ainsi que les facteurs de dégénérescence qui leur sont associés.
 - 5. Calculer numériquement l'énergie minimale d'un électron dans une boite de potentiel de coté 0, 1nm.

1. On est dans le cas général à 3D, avec
$$V = 0$$
 (à l'intértaux de la boite):
$$-\frac{h^2}{2n} = 0 \quad \text{donc en cartésiennes} : -\frac{h^2}{2n} \left(\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} \right) = E \phi$$
2. $\phi(u, y; z) = \phi_n(z) \phi_y(y) \phi_z(z)$

winsi, $\frac{\partial^2 \phi}{\partial x^2} = \frac{\partial^2 \phi_n}{\partial u^2} \phi_7 \phi_2$; $\frac{\partial^2 \phi}{\partial y^2} = \phi_n \frac{\partial^2 \phi_1}{\partial y^2} \phi_2$ et $\frac{\partial^2 \phi}{\partial z^2} = \phi_n \phi_7 \frac{\partial^2 \phi}{\partial z^2}$ en Intectent ceci dans ℓ équation de la question ℓ et en divisant pan ℓ ,

on obtient:
$$-\frac{\hbar^2}{2m}\left(\frac{1}{\Phi_{n}}\frac{\partial^2\Phi_{n}}{\partial n^2} + \frac{1}{\Phi_{\gamma}}\frac{\partial^2\Phi_{\gamma}}{\partial \gamma^2} + \frac{1}{\Phi_{z}}\frac{\partial^2\Phi_{z}}{\partial z^2}\right) = E = \frac{En + Ey + Ez}{constant}$$

On an disduit les 3 équations:
$$\frac{\partial^2 \phi_x}{\partial x^2} + kx^2 \phi_x = 0 \quad \text{ance } kx = \frac{\int 2 m Ex}{h}$$
 (1)
$$\frac{\partial^2 \phi_x}{\partial x^2} + kx^2 \phi_x = 0 \quad \text{ance } kx = \frac{\int 2 m Ex}{h}$$
 (2)
$$\frac{\partial^2 \phi_x}{\partial x^2} + kx^2 \phi_x = 0 \quad \text{ance } kx = \frac{\int 2 m Ex}{h}$$
 (3)
$$\frac{\partial^2 \phi_x}{\partial x^2} + kx^2 \phi_x = 0 \quad \text{ance } kx = \frac{\int 2 m Ex}{h}$$
 (3)

3. Resolvens (1):
$$\phi_{\alpha} = A e^{ih\alpha \alpha}$$
, $B e^{-ih\alpha \alpha}$
 $\phi_{\alpha}(x=0)$ done $A+B=0$ as $\phi_{\alpha} = A(e^{ih\alpha}-e^{-ih\alpha}) = 2iA sm(ka)$
et $\phi_{\alpha}(x=l\alpha)$ done $sin(hala) = 0$ => $hala = nati$ => $ha = tina$

d'où
$$E_{R} = \frac{h^{2} ha^{2}}{2m} = \frac{h^{2} na^{2}}{2m} = \frac{h^{2} na^{2}}{ha^{2}} = \frac{h^{2} na^{2}}{8m \ln^{2}}$$
 colculs que pour le puits

de nême,
$$E_Y = \frac{h^2 ny^2}{8m Ly^2}$$
 et $E_Z = \frac{h^2 nz^2}{8m Lz^2}$

$$Enfm, E = Enc + E_Y + E_Z, ce qui donne$$

$$E = \frac{h^2}{8m} \left(\left(\frac{nz}{Lnc} \right)^2 + \left(\frac{ny}{Ly} \right)^2 + \left(\frac{nz}{Lz} \right)^2 \right)$$

$$\ln = L_Y = L_2 = L = > E = \frac{h^2}{8mL^2} \left(n_R^2 + n_Y^2 + z^2 \right)$$

$$\frac{8 \text{ mL}^{2} \text{ E}}{b^{2}} = \frac{1}{4} \left(\frac{3}{3}, \frac{2}{4}, \frac{1}{3} \right); \left(\frac{3}{4}, \frac{1}{4}, \frac{2}{3} \right); \left(\frac{2}{4}, \frac{3}{4}, \frac{1}{3} \right); \left(\frac{1}{4}, \frac{2}{4}, \frac{3}{3} \right) \Rightarrow \frac{8}{8} = \frac{1}{4}$$

$$\frac{1}{4} = \frac{1}{4} \left(\frac{3}{4}, \frac{2}{4}, \frac{2}{4} \right) \Rightarrow \frac{8}{4} = \frac{3}{4}$$

$$\frac{1}{4} = \frac{1}{4} \left(\frac{3}{4}, \frac{2}{4}, \frac{2}{4} \right); \left(\frac{2}{4}, \frac{3}{4}, \frac{2}{4} \right) \Rightarrow \frac{8}{4} = \frac{3}{4}$$

$$\frac{1}{4} = \frac{1}{4} \left(\frac{3}{4}, \frac{2}{4}, \frac{2}{4} \right); \left(\frac{2}{4}, \frac{3}{4}, \frac{2}{4} \right) \Rightarrow \frac{8}{4} = \frac{3}{4}$$

$$\frac{1}{4} = \frac{1}{4} \left(\frac{3}{4}, \frac{2}{4}, \frac{2}{4} \right); \left(\frac{2}{4}, \frac{3}{4}, \frac{2}{4} \right) \Rightarrow \frac{8}{4} = \frac{3}{4}$$

$$\frac{1}{4} = \frac{1}{4} \left(\frac{3}{4}, \frac{2}{4}, \frac{2}{4} \right); \left(\frac{2}{4}, \frac{3}{4}, \frac{2}{4} \right) \Rightarrow \frac{8}{4} = \frac{3}{4}$$

$$\frac{1}{4} = \frac{1}{4} \left(\frac{3}{4}, \frac{2}{4}, \frac{2}{4} \right); \left(\frac{2}{4}, \frac{3}{4}, \frac{2}{4} \right) \Rightarrow \frac{8}{4} = \frac{3}{4}$$

$$\frac{1}{4} = \frac{1}{4} \left(\frac{3}{4}, \frac{2}{4}, \frac{2}{4} \right); \left(\frac{3}{4}, \frac{2}{4}, \frac{2}{4} \right) \Rightarrow \frac{8}{4} = \frac{3}{4}$$

$$\frac{1}{4} = \frac{1}{4} \left(\frac{3}{4}, \frac{2}{4}, \frac{2}{4} \right); \left(\frac{3}{4}, \frac{2}{4}, \frac{2}{4}, \frac{2}{4} \right) \Rightarrow \frac{8}{4} = \frac{3}{4}$$

$$\frac{1}{4} = \frac{1}{4} \left(\frac{3}{4}, \frac{2}{4}, \frac{2}{4}, \frac{2}{4}, \frac{2}{4} \right); \left(\frac{3}{4}, \frac{2}{4}, \frac{2}{4}, \frac{2}{4} \right) \Rightarrow \frac{8}{4} = \frac{3}{4}$$

$$\frac{1}{4} = \frac{1}{4} \left(\frac{3}{4}, \frac{2}{4}, \frac$$

5.
$$Emn = \frac{3h^2}{8mL^2}$$
 A.N: $Emm = 1, 8.10^{-17}$ T = 113 eV.

On considère une particule de masse m, soumise à un potentiel de la forme $V(x) = \frac{1}{2}m\omega^2x^2$. Dans l'état fondamental (stationnaire) d'énergie E_0 , la fonction d'onde de la particule est donnée par $\psi(x,t) = A\exp\left(-\frac{x^2}{2}\right)e^{-i\frac{E_0t}{\hbar}}$

On donne : $\int_{-\infty}^{+\infty} \exp(-\alpha u^2) du = \sqrt{\frac{\pi}{\alpha}}$

- 1. Pourquoi qualifie-t-on cette situation d'oscillateur harmonique?
- 2. Déterminer la constante A.
- 3. Représenter l'allure de la densité de probabilité de présence de la particule en fonction de x. Que représente a physiquement?
 - 4. En utilisant l'équation de Schrödinger, déterminer l'expression de E_0 en fonction de \hbar et ω .
- 1. $V = \frac{1}{2} m \omega \alpha^2 = \frac{1}{2} k \alpha^2$ en posant $k = m \omega^4$, on retrouve l'énerge potentielle associée à une fonce de rappel élastique, on une masse m soumes à une telle force constitue un oscillateur harmonique.
- 2. Condition de nonmalisation $AD: \int_{-\infty}^{+\infty} |\psi|^2 dn = A$ Da, $|\psi|^2 = |A|^2 e^{-\frac{2\pi^2}{a^2}}$ Donc $|A|^2 \int_{-\infty}^{+\infty} e^{-\frac{2\pi^2}{a^2}} dn = 1$ Da, $\int_{-\infty}^{+\infty} e^{-\frac{2\pi^2}{a^2}} dn = \sqrt{\frac{2\pi^2}{a^2}} dn = \sqrt{\frac{2$
- 3. Représentation graphique page survante à (homogène à une longueun) est assocré à l'extension spatrale de la fonction d'onde (de l'ordre de la n, de 22 à + 22).
- 4. Etat statemente: $-\frac{t^2}{em} \frac{d^2 \varphi}{dn^2} + V \psi = E_0 \psi$ $D_{n_1} \psi(x) = A e^{-\alpha^2/a^2} = \frac{d^2 \varphi}{dn} = A e^{-\alpha^2/a^2} \left(-\frac{2\pi}{a^2}\right) = \frac{d^2 \varphi}{dn^2} = A e^{-\frac{2^2}{a^2}} \left(\frac{4\pi^2}{a^4} \frac{2}{a^2}\right)$ $= 4 \cdot \frac{2}{a^2} \left(\frac{2\pi^2}{a^2} 4\right)$

$$D'où -\frac{\hbar^2}{2m} \cdot 4 \cdot \frac{2}{a^2} \left(\frac{2x^2}{a^2} - 1 \right) + \frac{1}{2} m \omega^2 x^2 4 = E \cdot 4$$

Soft
$$\frac{\hbar^2}{ma^2}\left(1-\frac{2\kappa^2}{a^2}\right)+\frac{1}{2}m\omega^2\kappa^2=E_0$$

Ga doit être verifre for, donc:

$$\begin{cases} \frac{\hbar^2}{ma^2} = Eo & (A) \\ -2\hbar^2 + \frac{1}{2}m\omega^2 = 0 & (2) \end{cases}$$

(2) donne
$$2 + \frac{2}{1} = \frac{m^2 a^4 \omega^2}{2}$$

donc $a^2 = \frac{2h}{m\omega}$

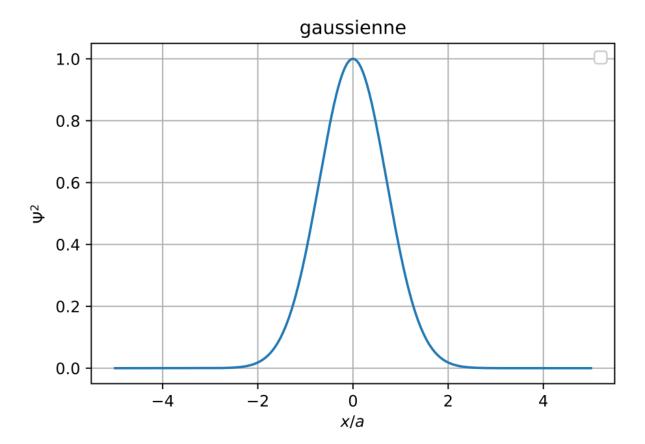
On retrouve above the et on impecte dons (1):

fordamental d'an to $\frac{h^2}{m\omega} = \frac{h^2}{m\omega}$

donc $E_0 = \frac{h^2}{m\omega}$

oscillateur hamorque

en physique quantique -



En déposant une fine couche d'un matériau semi-conducteur comme GaAS sur un autre semi-conducteur (tel que Ga_{0.7}Al_{0.3}As), on réalise un puits d'énergie potentielle pour un électron de cette couche. L'interface vide-GaAs peut-être assimilée à une barrière de hauteur infinie, ce qui donne la forme suivante pour V(x):

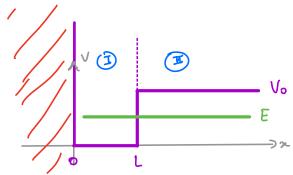
$$V(x) = \begin{cases} +\infty & \text{pour } x < 0 \\ 0 & \text{pour } 0 < x < L \quad (V_0 > 0) \\ V_0 & \text{pour } x > L \end{cases}$$

- 1. L'énergie de l'électron est inférieure à V_0 . Résoudre l'équation de Schrödinger des états stationnaires et établir la condition de quantification de l'énergie : $tan(kL) = -k/\rho$ avec $k = \sqrt{2mE}/\hbar$ et $\rho = \sqrt{2m(V_0 - E)}/\hbar$.
 - 2. Que devient cette condition si le rapport V_0/E tend vers l'infini? Commenter.

1. Zone
$$\overline{I}$$
: $-\frac{\pi^2}{2m} \frac{d^2 p}{dn^2} = \overline{E} \cdot \overline{p}$

$$\frac{d^2 p}{dn^2} + h^2 \cdot \overline{p} = \overline{D} \quad V = \frac{\sqrt{2nG}}{\hbar}$$

$$V_3(n) = h e^{-\frac{\pi}{2}h} + B e^{-\frac{\pi}{2}h}$$



$$\frac{1}{2m} \frac{d^2 \varphi}{dw^2} + \sqrt{6} \varphi = \frac{1}{2} \varphi \qquad (E < \sqrt{6})$$

$$= \frac{1}{2m} \frac{d^2 \varphi}{dw^2} - \frac{1}{2} \varphi = 0 \qquad (E < \sqrt{6})$$

$$= \frac{1}{2m} \frac{d^2 \varphi}{dw^2} - \frac{1}{2} \varphi = 0 \qquad (E < \sqrt{6})$$

$$= \frac{1}{2m} \frac{d^2 \varphi}{dw^2} - \frac{1}{2} \varphi = 0 \qquad (E < \sqrt{6})$$

$$= \frac{1}{2m} \frac{d^2 \varphi}{dw^2} - \frac{1}{2} \varphi = 0 \qquad (E < \sqrt{6})$$

e, done il faut D=D

continuité:
$$(2\pm(\alpha=0)=0)$$
 (présence "intendité" pour $\alpha\leq0$)

on n'explois

on n'exploite par le continuent de d'en à le lancte d'une some interdite

$$\frac{d\ell_{5}}{dn}(n=L) = \frac{d\ell_{5}}{dn}(n=L)$$

$$\Rightarrow ik(Ae^{ikL} - Be^{-ikL}) = -e^{Ce^{-\ell L}}$$
(3)

Jame
$$B = -A$$
, done:
(2) => $A(e^{ikL} - e^{-ikL}) = Ce^{-eL} => 2:A sn(kL) = Ce^{-eL}$
(3) => $ikA(e^{ikL} + e^{-ikL}) = -eCe^{-eL} => 2:kA cos(kL) = -eCe^{-eL}$
 $fan(kL) = fan(kL) = fan(kL)$

donc
$$2 i A sin(kL) = \frac{2 i h A}{-e} cos(kL) => sin(kL) = -\frac{h}{e} cos(kL) => fan(hL) = -\frac{h}{e}$$

2. Vo >> E =>
$$\ell$$
 >> k et donc $\frac{k}{\ell}$ <<1

d' où ton $(hL) \simeq D$ donc $kL \simeq n\pi \implies k \simeq \frac{n\pi}{L}$

et ensuite $h = \frac{\sqrt{2mE}}{\hbar} \implies E = \frac{(\hbar h)^2}{2m} \implies E = \frac{\hbar^2 n^2 \pi^2}{2mL}$

coît $E = \frac{n^2 h^2}{8mL^2}$

On retrouve les résultats obterns pour le puits infini, ce qui en logrque pour Vo >> E.

On s'intéresse à un puits de potentiel de profondeur finie à une dimension, c'est à dire que :

$$V(x) = \begin{cases} 0 \text{ si } 0 < x < L \\ V_0 \text{ sinon} \end{cases}$$

On recherche les solutions à l'équation de Schrodinger pour des états stationnaires.

- 1. Ecrire l'équation de Schrodinger pour chacun des deux cas. On notera $\rho = \frac{\sqrt{2m(V_0 E)}}{\hbar}$ et $k = \frac{\sqrt{2mE}}{\hbar}$.
- 2. En déduire les expressions des fonctions d'onde associées pour chacune des 3 zones de l'espace. On ne cherchera pas à normaliser et on fera attention à ce que les solutions obtenues ne divergent pas.
 - 3. En exploitant les conditions de continuité, montrer que :

$$exp(2ikL) = \left(\frac{\rho - ik}{\rho + ik}\right)^2$$

4. On traite le cas $exp(ikL) = -\frac{\rho - ik}{\rho + ik}$ (l'autre cas étant $exp(ikL) = \frac{\rho - ik}{\rho + ik}$). Montrer que cela conduit à :

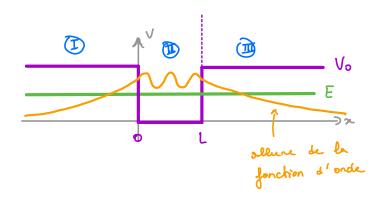
$$\begin{cases} |\cos\left(\frac{kL}{2}\right)| = \frac{k}{k_0} \\ \tan\left(\frac{kL}{2}\right) > 0 \end{cases}$$

avec $k_0 = \frac{\sqrt{2mV_0}}{\hbar}$.

- 5. On considère les valeurs suivantes : $m=9.10^{-31}kg$ (électron), $V_0=10eV$ et L=1nm. Calculer numériquement k_0 .
- 6. Résoudre numériquement (de manière approximative, on peut se limiter à tracer les courbes et repérer les intersections) pour trouver les trois valeurs de k possibles et calculer les énergies associées (il y a d'autres valeurs possibles associées au cas $exp(ikL) = \frac{\rho ik}{\rho + ik}$).

$$\Rightarrow \frac{d^2\ell}{dn^2} - \ell^2 \ell = 0 , \quad \ell = \frac{\sqrt{\epsilon n(v_0 - \epsilon)}}{\hbar}$$

$$\Rightarrow \frac{d^2 \ell}{d n^2} + h^2 \ell = 0, \quad h = \frac{\sqrt{2 m E}}{\hbar}$$



3. continuité de
$$\ell$$
 en $x = 0$: $\ell_{\pm}(x=0) = \ell_{\pm}(x=0) \Rightarrow A = B + C$ (A)

continuité de $\frac{d\ell}{dn}$ en $x = 0$: $\frac{d\ell_{\pm}}{dn}(n=0) = \frac{d\ell_{\pm}}{dn}(n=0) \Rightarrow \ell = ih(B-C)$ (2)

continuité de ℓ en $x = L$: $\ell_{\pm}(n=0) = \ell_{\pm}(n=0) \Rightarrow \ell = ih(B-C)$ (3)

continuité de ℓ en $\ell = L$: $\ell_{\pm}(n=0) = \ell_{\pm}(n=0) \Rightarrow \ell = \ell$ (4)

continuité de ℓ en $\ell = L$: $\ell_{\pm}(n=0) = \ell$ (4)

continuité de ℓ en $\ell = L$: $\ell_{\pm}(n=0) = \ell$ (4)

continuité de ℓ en $\ell = L$: $\ell_{\pm}(n=0) = \ell$ (4)

continuité de ℓ en $\ell = L$: $\ell_{\pm}(n=0) = \ell$ (4)

continuité de ℓ en ℓ e

(A) et (2) dennet :
$$B+C=\frac{rh}{e}(B-C)$$
 => $C\left(1+\frac{rh}{e}\right)=B\left(\frac{rh}{e}-1\right)$
=> $B=C\frac{rh+e}{rh-e}$ (5)

On injecte (5) dans (6):
$$C \frac{ih+e}{ih-e} e^{ihL} + C e^{-ihL} = -\frac{ih}{e} \left(C \frac{ih+e}{ih-e} e^{ihL} - C e^{-ihL} \right)$$

divise par C et on meltoples pour e :

$$\frac{ih+\ell}{rh-\ell} = \frac{2ihl}{+1} + 1 = -\frac{ih}{\ell} \left(\frac{ih+\ell}{rh-\ell} = \frac{2ihl}{-1} \right)$$

$$\frac{ih+\ell}{ih-\ell} e^{2ihL} \left(1 + \frac{ih}{\ell} \right) = \frac{ih}{\ell} - 1$$

The donc
$$e^{\text{thl}} = \left(\frac{\text{ih} - \ell}{\text{ih} + \ell}\right)^2$$
 soil $e^{\text{thl}} = \left(\frac{\ell - \text{ih}}{\ell + \text{ih}}\right)^2$

$$e^{2thL} = \left(\frac{\ell - ih}{\ell + ih}\right)^{2}$$

4.

$$e^{2\tau h L} = \left(\frac{\ell - ih}{\ell + ih}\right)^{2}$$
on
$$e^{thL} = \frac{\ell - ih}{\ell + ih}$$

$$e^{thL} = \frac{\ell - ih}{\ell + ik}$$

Dons a second cas, als conduit à:

$$(=) \text{ ih } \left(\underbrace{e^{\text{ihl}/2} - e^{-\text{Thl}/2}} \right) = -e \left(\underbrace{e^{\text{ihl}/2} + e^{-\text{Thl}/2}} \right)$$

$$\underbrace{e^{\text{ihl}/2} - e^{-\text{Thl}/2}}_{\text{2 cos}} \left(\underbrace{\text{hl}/2} \right)$$

On en déduit : ton
$$(hl/2) = \frac{l}{h}$$
 donc $ton (hl/2) > 0$

On pose
$$ho^2 = h^2 + \ell^2$$
, $done ho^2 = \frac{2mE}{h^2} + \frac{2m(vo - E)}{h^2} = \frac{2mvo}{h^2}$

et $ho^2 \cos^2(hL/2) = k^2$
 $done \cos^2(hL/2) = \frac{k^2}{ho^2}$
 $soit$
 $\left[\cos(hL/2)\right] = \frac{k}{ho}$

6. On pose
$$x = \frac{kL}{2}$$
 (note à voir evec le x de $V(x)$)

alors $|\cos(kL(z))| = \frac{kL}{2} \cdot \frac{2}{Lko} = 1$ $|\cos(x)| = \alpha x$ evec $\alpha = \frac{2}{Lko}$ données, $\alpha = 0/\Lambda z$

On chenche donc les intersections de $\gamma = |\cos(x)|$ et $\gamma = \alpha x = 0/\Lambda z$ $\gamma = 0/\Lambda z$

en tenant compte du fout que tan(α) > 0, donc re $\alpha = 0/\Lambda z$ ou $\gamma = 0/\Lambda z$ ou $\gamma = 0/\Lambda z$

Voir page survante -

On thouse pour n be valeurs (approximatives): 1,35; k_125 et 4,85 (Sens démension) on en déduct les valeurs de $k(k=\frac{2n}{L}):2,7$; 8,5 et 13,6 (en 10^{9} n⁻¹) Et les énergres correspondantes ($E=\frac{h^2h^2}{2m}$): 0,28; 2,7 et 7,1 eV.

on a donc from 3 revenue d'énergée (over les valeurs données, il y en k 3 antres associées à $e^{thL} = \frac{e^{-th}}{e^{+th}}$) -

