MP2 DS 3 PHYSIQUE

La durée est de 3 heures Les calculatrices sont autorisées

Problème 1

I Principe de fonctionnement du condensateur _____

Cette partie s'intéresse au principe de fonctionnement du condensateur, à travers les modèles électrostatique et électrocinétique usuels.

I.1 Modèle électrostatique

Permittivité diélectrique du vide : $\varepsilon_0 = 8.85 \times 10^{-12} \, \mathrm{F \cdot m^{-1}} \simeq 10^{-11} \, \mathrm{F \cdot m^{-1}}$.

1 - Préliminaire : on considère un plan infini chargé avec une densité surfacique de charge σ uniforme. On note Oz l'axe orthogonal au plan, tel que l'équation du plan est z=0. On note $(\vec{e}_x,\vec{e}_y,\vec{e}_z)$ la base orthonormée usuelle, et O le centre du repère.

Démontrer soigneusement que le champ électrique créé par cette distribution est donné par :

$$\vec{E} = \frac{\sigma}{2\varepsilon_0}\vec{e}_z \text{ pour } z > 0, \text{ et } \vec{E} = -\frac{\sigma}{2\varepsilon_0}\vec{e}_z \text{ pour } z < 0.$$
 (1)

On modélise maintenant un **condensateur** par deux plans parallèles, chacun de surface S. On note Oz l'axe orthogonal aux deux plans. Le plan supérieur, situé en z=e (e distance positive), porte une densité surfacique de charge $\sigma>0$, et le plan inférieur (en z=0) une densité opposée. On note U la différence de potentiel entre le plan supérieur et le plan inférieur : U=V(e)-V(0) avec V le potentiel électrostatique. On néglige tout effet de bord.

- 2 Déterminer l'expression du champ électrique en tout point de l'espace.
- ${\bf 3}$ Déterminer l'expression de la différence de potentiel U en fonction de $\sigma,\,e$ et $\varepsilon_0.$

Puis déterminer l'expression de la capacité C du condensateur, définie par la relation Q = CU où Q est la charge portée par l'armature positive, en fonction de S, e et ε_0 .

Faire l'application numérique pour une surface $S=1\,\mathrm{cm}^2$ et une séparation $e=0,1\,\mathrm{mm}$.

4 - On rappelle que la densité volumique d'énergie du champ électrique est $u_E=\varepsilon_0 E^2/2$.

En déduire que l'expression de l'énergie stockée par le condensateur est $\mathcal{E}_{\text{stockée}} = \frac{1}{2}CU^2$.

On admettra que toutes ces expressions, ici démontrées dans le cadre de l'électrostatique (grandeurs indépendantes du temps), restent valables dans le cadre des régimes lentement variables de l'ARQS (approximation des régimes quasi-stationnaires), cadre qui est celui utilisé dans tout ce sujet.

1.2 Modèle électrocinétique

On considère maintenant un condensateur comme un composant électronique. On utilise la convention récepteur.

- $\bf 5$ En partant de la relation Q=CU, démontrer la relation usuelle entre tension et intensité pour un condensateur.
- 6 En exploitant la question précédente, démontrer à nouveau l'expression $\mathcal{E}_{\text{stockée}} = \frac{1}{2}CU^2$ de l'énergie stockée par le condensateur.

II Un exemple d'utilisation des condensateurs : les supercondensateurs _

On donne: $4 \times 3.6/3 = 4.8$; $4/(3 \times 3.6) = 0.37$; $3/(4 \times 3.6) = 0.21$; $200/7.5^2 = 3.6$; $7.5^2/200 = 0.28$.

Un "supercondensateur" est un condensateur de technique particulière, qui permet d'obtenir une capacité élevée pour un encombrement réduit, et donc une densité de puissance et une densité d'énergie intermédiaires entre les batteries et les condensateurs électrolytiques classiques. Ils sont utilisés dans des domaines variés, dont la propulsion de bateaux, de bus ou de tramway. Leur faible résistance interne permet des courants élevés et donc des charges rapides et des puissances de sortie importantes.

Nous étudions ici un exemple d'application des supercondensateurs, et en particulier nous voyons ce qui contraint leur dimensionnement (quelle capacité, quelle résistance interne?).

Supercondensateurs.

Tramway de la ligne T3, ici sur une section avec ligne aérienne de contact.

Document : En 2009, la RATP et Alstom ont expérimenté en service commercial un tramway Citadis équipé de supercondensateurs sur la ligne T3 du réseau francilien. La rame a été équipée de 48 modules de supercondensateurs (15 kg pièce) pour le stockage de l'énergie à bord. L'ensemble est équivalent à 48 supercondensateurs montés en dérivation sous une tension de 750 V. Ceci permet aux trams de circuler en autonomie sur les sections dépourvues de ligne aérienne de contact. En autonomie la rame peut franchir 400 m, soit la distance entre deux stations sur la ligne T3, avec une vitesse moyenne d'environ $15 \, \mathrm{km/h}$.

Les moteurs développent une puissance moyenne continue de $500\,\mathrm{kW}$, et sont alimentés sous $750\,\mathrm{V}$. Présentant une résistance interne très faible, les supercondensateurs autorisent le passage d'intensités très importantes pendant les 20 secondes que dure un rechargement en station, et sont donc en cela plus adaptés que les batteries conventionnelles.

Source images : Wikipedia, et texte :

À l'aide des données du document ci-dessus et des approximations nécessaires, en déduire les valeurs :

- 7 de l'énergie \mathcal{E}_{tot} nécessaire au trajet entre deux stations,
- 8 de la capacité d'un des 48 supercondensateurs (commenter la valeur trouvée),
- 9 de la résistance du circuit de charge.

Problème 2

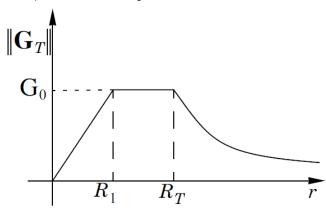
Données numériques :	
Constante de gravitation universelle	$G = 6,67 \cdot 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$
Permittivité électrique du vide	$\varepsilon_0 = 8,85 \cdot 10^{-12} \mathrm{F \cdot m}^{-1}$
Masse de la Terre	$M_T = 5,98 \cdot 10^{24} \text{ kg}$
Rayon de la Terre	$R_T = 6,38 \cdot 10^3 \text{ km}$ (quand on supposera la Terre sphérique)

- 1. Exprimer la force électrostatique $\vec{F}_{1/2}^e$ exercée par une charge ponctuelle q_1 sur une charge ponctuelle q_2 .
 - Faire un schéma précisant clairement les notations utilisées.
 - En déduire le champ électrostatique E créé par une charge ponctuelle q.
- 2. Énoncer le théorème de Gauss de l'électrostatique.
- 3. Exprimer la force gravitationnelle $\vec{F}_{1/2}^g$ exercée par une masse ponctuelle m_1 sur une masse ponctuelle m_2 .
 - En déduire le champ gravitationnel \vec{G} créé par une masse ponctuelle m.
- **4.** Dresser un tableau présentant les analogies entre les grandeurs électrostatiques et les grandeurs gravitationnelles. En déduire le théorème de Gauss pour le champ gravitationnel créé par une distribution de masses quelconques.

Application : dans un premier temps, on assimile la Terre à une sphère de centre O, de rayon R_T et de masse M_T uniformément répartie dans tout le volume.

- **5.** Déterminer le champ gravitationnel terrestre \vec{G}_T en tout point de l'espace en fonction de R_T , M_T et r.
 - Représenter $\|\vec{G}_T\|$ graphiquement en fonction de r = OM.
- **6.** Calculer $G_0 = \|\vec{G}_T\|$ à la surface de la Terre. Application numérique.

En réalité la masse n'est pas uniformément répartie. Dans un modèle plus élaboré dans lequel on suppose la symétrie sphérique conservée, les variations de sont représentées sur la figure ci-dessous avec R₁ = 3,50.10³ km.



- 7. Justifier que le champ gravitationnel à la surface de la Terre n'est pas modifié.
- 8. Justifier que dans ce modèle, on considère le noyau terrestre (0 < r < R₁) comme homogène. Calculer sa masse volumique moyenne.
- 9. Déterminer la masse M_{manteau}(r) contenue dans le manteau terrestre (R₁ < r < R_T) en fonction de G₀, G, R₁ et r.
 En reliant ρ_{manteau}(r), la masse volumique du manteau, à la masse dM_{manteau} comprise entre les sphères de rayons r et r + dr, R₁ < r < R_T, déterminer si ρ_{manteau} est une fonction croissante ou décroissante de r.

Problème 3

La mesure de l'intensité d'un courant électrique peut nécessiter des méthodes très éloignées de celle utilisée dans un multimètre d'usage courant. Ce sujet envisage une méthode particulièrement adaptée à la mesure de courants d'intensité élevée. Dans ce problème, les courants mesurés ont des intensités de l'ordre du kA.

Les valeurs numériques demandées seront exprimées avec deux chiffres significatifs.

Données numériques :

• Perméabilité magnétique du vide : $\mu_0 = 4\pi.10^{-7}$ H.m.

Constante d'Avogadro : N_A = 6,0.10²³ mol⁻¹

Charge de l'électron : – e = – 1,6.10⁻¹⁹ C

Masse de l'électron : m = 9,1.10-31 kg.

Pince ampèremétrique.

L'ouverture de la pince ampèremétrique permet d'insérer dans sa boucle le fil parcouru par le courant dont l'intensité est à mesurer. Lorsque la pince est fermée, ses deux mâchoires constituent une bobine. Le phénomène d'induction magnétique permet d'obtenir aux bornes de cette bobine une tension directement liée à l'intensité à mesurer.

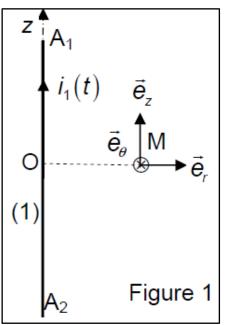
A. Principe

Le courant dont l'intensité variable $i_1(t)$ est à mesurer parcourt un fil rectiligne (1), confondu avec l'axe Oz, dont les bornes A_1 et A_2 sont supposées, dans un premier temps, infiniment éloignées l'une de l'autre. Il s'agit de déterminer le champ magnétique \vec{B}_1 créé par le fil (1) en tout point M de l'espace en dehors du fil.

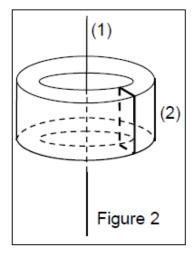
On admettra que l'on peut calculer le champ \vec{B}_1 comme si le courant $i_1(t)$ était constant

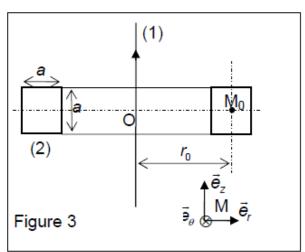
Le point M est repéré par ses coordonnées cylindriques (r,θ,z) comme indiqué **Figure 1**.

- 1. Par des arguments précis de symétries et d'invariances, indiquer la direction du champ magnétique \vec{B}_1 créé en M.
- 2. Des lignes de champ magnétique sont représentées Figure 1 bis (en annexe). Montrer la cohérence avec la question précédente.
- 3. En choisissant avec précision un contour d'Ampère, déterminer l'expression du champ magnétique créé par ce fil « infini » parcouru par le courant i₁. Représenter sur la **feuille réponse**, à l'échelle, le champ magnétique en M sur la **Figure 1 bis.** Quel est le signe du courant dans le fil vertical ?



La pince ampèremétrique est modélisée par une bobine (2) constituée d'un fil enroulé sur un tore d'axe Oz, de rayon moyen $r_0 = 2.5$ cm et de section carrée de côté a = 1 cm. Le tore est supposé être constitué d'un matériau non magnétique, i.e. dont les propriétés magnétiques sont celles du vide. L'enroulement comporte $N = 1,0.10^3$ spires jointives et régulièrement réparties, cf. **Figures 2 et 3**. Ses extrémités sont dans un premier temps reliées à un oscilloscope.





- **4.** Définir puis exprimer le flux φ du champ $\vec{B}_1(M,t)$ à travers une spire de la bobine (2) orientée par sa normale \vec{e}_{θ} . En déduire le flux φ au travers de l'ensemble de la bobine (2).
- 5. Exprimer le flux ϕ_{21} du champ moyen $\vec{B}_1(M_0,t) = \vec{B}_1(r_0,\theta,0,t)$ à travers une spire de la bobine, en supposant le champ magnétique uniforme sur la surface de la spire et égal à sa valeur en M_0 .

 Donner la nouvelle expression du flux ϕ_{21} du champ magnétique créé par le fil (1) à travers la bobine (2).
- **6.** Calculer littéralement puis numériquement l'erreur relative $\frac{\phi_{21} \phi}{\phi_{21}}$ commise en remplaçant ϕ par ϕ_{21} ?

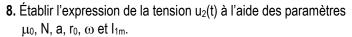
Pour la suite du problème, seule l'expression approchée ϕ_{21} du flux sera utilisée.

Remarque : à partir de la question 7, des notions sur l'induction sont utilisées.

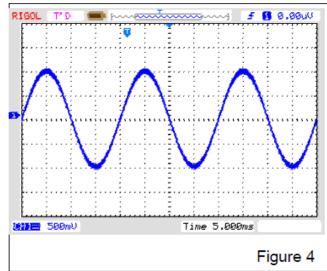
7. Donner alors l'expression de $u_2(t)$, valeur absolue de la tension obtenue aux bornes de la bobine (2). Quelle est sa valeur lorsque l'intensité du courant $i_1(t)$ dans le fil (1) est constante ? Commenter.

B. Mesures

Le courant dans le fil (1) est sinusoïdal d'intensité $i_1(t) = I_{1m}.cos(\omega t)$. La bobine (2) étant reliée à un oscilloscope. L'oscillogramme est représenté **Figure 4** avec les échelles suivantes : 1 carreau pour 5 ms et 1 carreau pour 500 mV.



- 9. Quelle est la valeur numérique de la fréquence f du courant i₁(t) ?
- 10. Quelle est la valeur numérique de l'intensité efficace l₁ du courant i₁(t) ?



C. Influence de la position du fil

- Donner la définition d'un coefficient d'induction mutuelle entre deux circuits.
 De quoi dépendent sa valeur et son signe ?
 Donner, à partir de φ₂₁, l'expression du coefficient d'induction mutuelle M₂₁ entre les circuits (1) et (2).
- 12. La bobine (2) est maintenant parcourue par un courant d'intensité i₂(t) dont l'orientation est précisée Figure 5.
 Déterminer soigneusement la direction du champ magnétique B

 2 (M,t) qu'elle crée en tout point M repéré par ses coordonnées cylindriques (r,θ,z).
- 13. L'expression du module de ce champ en tout point de l'espace situé à l'intérieur du tore est $B_2(r,\theta,z,t) = \frac{\mu_0 N i_2(t)}{2\pi r}$ et ce champ magnétique est nul à l'extérieur du tore. Pour la suite, comme en 5., le champ magnétique \vec{B}_2 (M,t) est supposé uniforme sur la surface d'une spire et égal à sa valeur en M_0 . Les bornes A_1 et A_2 du fil (1) sont maintenant reliées entre elles pour former un circuit fermé ; ce circuit est supposé plan, contenu dans un plan méridien du tore. Donner, par un calcul d'intégrale, l'expression du flux ϕ_{12} du champ \vec{B}_2 (M_0 ,t) créé par la bobine (2) à travers le circuit (1) ainsi réalisé. En déduire l'expression du coefficient d'induction mutuelle M_{12} défini à partir de ϕ_{12} et commenter.