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Partie A / Étude des bobines utilisées

A1. L’équation de Maxwell-Thomson s’écrit div !B = 0 ; celle de Maxwell-Ampère s’écrit

−→
rot !B = µ0

(

! + ε0
∂ !E

∂t

)

Dans le cadre de l’ARQS, l’équation de Maxwell-Ampère s’écrit
−→
rot !B = µ0! .

A2. Soit un contour fermé orienté L. Par le théorème de Stokes,
∮

L

!B · d!% =
∫∫

S

−→
rot !B · d!S

où S est une surface s’appuyant sur L. Avec
−→
rot !B = µ0!,

∮

L

!B · d!% = µ0Ienlacé .

A3. L’approximation du solénoïde infini est valable si % # a .

A4. Symétries : (M,!ur,!uθ) est un plan de symétrie des courants. !B(M), devant être perpendiculaire à
ce plan, est porté par !uz.
Invariances : la distribution de courants est invariante par translation selon z, et par rotation

selon θ : B ne dépend donc que de r. Finalement, !B(M) = B(r)!uz .

A5. Soit un contour d’Ampère rectangulaire ABCD (côté AB confondu avec l’axe Oz), de longueur b
et largeur c, entièrement contenu dans le solénoïde. !B étant selon !uz en tout point,

∮

ABCD

!B · d!% = [B(0) − B(c)]b

Ce contour n’enlace aucun courant. Par le théorème d’Ampère, il vient B(0) = B(c), ∀c < a : !B(M)
est uniforme dans le solénoïde.
Pour un contour rectangulaire ABCD (côté AB confondu avec Oz) de longueur b et largeur c > a,

∮

ABCD

!B · d!% = Bintb

car le champ magnétique est supposé nul à l’extérieur du solénoïde. Le courant enlacé par ce
contour valant Ienlacé = N(b/%)i(t), il vient, d’après le théorème d’Ampère,

!Bint =
µ0Ni(t)

%
!uz

A6. Tout plan passant par M et contenant !uz est plan d’antisymétrie des courants, et donc plan de
symétrie du champ magnétique. Ainsi, en tout point M de l’axe Oz, !B(M) est porté par !uz .
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A7. Le plan z = 0 est un plan de symétrie des courants, et donc un plan d’antisymétrie du

champ magnétique. Cette propriété se traduit par Bz(−z) = Bz(z), ∀z .

A8. Le champ magnétique est maximal en z = 0 et vaut

Bz, max =
µ0Ni(t)

2a z

Bz

0 a
−a

Par définition de z1/2, Bz(z1/2) = Bz, max/2. Il vient

a2

2(z1/2
2 + a2)3/2

=
1
4a

2a3 = (z1/2
2 + a2)3/2

z1/2 = a
√

22/3 − 1 ≈ 0,77 a

A9. Étudions la carte de champ du solénoïde.
— Le plan Π, passant par l’axe vertical de la carte de champ et perpendiculaire à celle-ci,

est un plan d’antisymétrie des courants. Ce plan est donc un plan de symétrie du champ
magnétique. Pour tout couple de points (L,M) symétriques par rapport à Π, on remarque
en effet que

!B(M) = symΠ[
#„

B(L)]

— Le plan Π∗, passant par l’axe horizontal de la carte de champ et perpendiculaire à cette
dernière, est un plan de symétrie des courants, soit également un plan d’antisymétrie du
champ magnétique. Pour tout couple de points (L,N) symétriques par rapport à Π∗, on note
effectivement que

#„

B(N) = −symΠ∗ [
#„

B(L)]

On retrouve les mêmes éléments de symétrie sur la carte de champ de la bobine plate.

A10. Les lignes de champ se resserrent aux endroits où le champ magnétique est plus intense. Elles
sont parallèles aux endroits où le champ magnétique est uniforme. Ces propriétés viennent
de l’équation locale div !B = 0 : le champ magnétique est à flux conservatif.

Partie B / Transfert de puissance : rendement de Yates

B1. Par définition,

Preçue = (uR1
+ uL1

)i = R1i2 + L1i
di

dt

L’intensité varie en cos(ωt) ; en utilisant les résultats usuels

〈cos2(ωt)〉 =
1
2

et 〈cos(ωt) sin(ωt)〉 =
〈

sin(2ωt)
2

〉

= 0

〈Preçue〉 =
R1I0

2

2

2



B2. On utilise l’expression du champ magnétique donnée par l’énoncé, en z = d, supposé uniforme au
niveau de la bobine réceptrice :

Φ =
∫∫

S

!B · d!S =
µ0 N1 i(t) a2

2(d2 + a2)3/2
N2S2 =

πµ0 N1 N2 i(t) a2b2

2(d2 + a2)3/2

B3. Il s’agit du phénomène d’induction électromagnétique, découlant de l’équation de Maxwell-
Faraday

−→
rot !E = −∂ !B

∂t

B4. On calcule la fem en utilisant la loi de Faraday :

e(t) = −dΦ
dt

=
πµ0 N1 N2 a2b2

2(d2 + a2)3/2
ωI0 sin(ωt)

B5. L’inductance propre de la bobine réceptrice étant négligée, cette dernière est parcourue par un
courant i2 = e/R2. De fait,

Pgéné = e i2 =
e2

R2
=

1
R2

[

πµ0 N1 N2 a2b2

2(d2 + a2)3/2
ωI0 sin(ωt)

]2

Puisque 〈sin2(ωt)〉 = 1/2,

〈Pgéné〉 =
1

2R2

[

πµ0 N1 N2 a2b2

2(d2 + a2)3/2
ωI0

]2

B6. En utilisant les résultats précédents,

η =
1

2R2

[

πµ0 N1 N2 a2b2

2(d2 + a2)3/2
ωI0

]2
2

R1I0
2

η = k
µ0

2 N1
2N2

2 a4b4 ω2

R1R2 (d2 + a2)3
avec k =

(

π

2

)2

Partie C / Modélisation du couplage : inductance mutuelle

C1. Le flux magnétique créé par un circuit 1, parcouru par un courant i1, à travers un circuit 2, s’écrit

Φ12 = Mi1 (ou Φ21 = Mi2)

M est en Henry.
C2. La loi des mailles dans le circuit 1 s’exprime

E = R1i1 + L1
di1

dt
+ M

di2

dt

De même, la loi des mailles dans le circuit 2 s’exprime

0 = R2i2 + L2
di2

dt
+ M

di1

dt

3



C3. On mutiplie la première loi des mailles par i1, la seconde par i2 :

Ei1 = R1i1
2 + L1i1

di1

dt
+ Mi1

di2

dt
et 0 = R2i2

2 + L2i2
di2

dt
+ Mi2

di1

dt

En sommant ces deux équations, on obtient

Ei1 = R1i1
2 + R2i2

2 +
dEmag

dt
avec Emag =

1
2

L1i1
2 +

1
2

L2i2
2 + Mi1i2

Ce bilan montre que la puissance fournie par le générateur, Ei1, est en partie dissipée par effet

Joule dans les résistances, en partie stockée sous forme magnétique dans les bobines.
C4. En reprenant l’expression de Emag,

Emag =
1
2

i2
2

[

L1

(

i1

i2

)2

+ L2 + 2M
(

i1

i2

)

]

Avec x = i1/i2,

Emag =
1
2

i2
2 P (x) avec P (x) = L1x2 + 2Mx + L2

C5. Puisque Emag ≥ 0, P (x) ≥ 0. Graphiquement, la fonction x → P (x) est une parabole tournée vers
le haut. Pour assurer que cette fonction soit positive pour tout x, il faut que le discriminant de
P (x) soit négatif ou nul :

∆ = (2M)2 − 4L1L2 ≤ 0

Il vient M ≤
√

L1L2 = Mmax .

C6. On peut par exemple citer :
• les transformateurs, permettant d’élever ou d’abaisser la tension dans les lignes électriques ;
• les moteurs électriques, comportant un circuit primaire fixe et un circuit secondaire mobile ;
• les alternateurs, fonctionnant dans le sens contraire des moteurs ;
• le chauffage par induction (four, plaque) ;
• la détection à boucle inductive (détecteur de métaux, de véhicules) ;
• la transmission d’informations par radio-identification (RFID), mise en œuvre par exemple

dans les portiques de sécurité...

D1.
D2.

D3.

D4.

D5.



Problème3

c'est un te ps f Eu ÎÉÎÛ

2 m Es Ê ÎÎ En RS Ey ô T Ê

3 je ne e ê Jee Ê La conductivité est définie par jet jÊ

D'où s ⁿ

AI ne 8,41013m
3 en cm 3 ça fait 8,41022

Tip ê L Pas

ÏÏÏÏÏ
5 R

6 Il faut tracer en e en fonction de 1f On trouve A 2,5 10
6 R m

B 110 k

7 On extrapole àpartir de la relation
précédente

Pour le silicium à 300k p 4 106 a m
le silicium est environ 300

foisplusrésistifque lecuivre

8 On enlève un électron à un
atome neutre Il en résulte une charge te

9 Si 4 B s 3 P 5

Pperd un électron Pt

B gagne un électron
B

10 DopagePhosphore plus d'é libres

Au départ ptrous et n électrons
libres On introduitNp par

ce de volume

atomes de phosphore Np é libres supplémentaires et Np ions

L'électroreutralité donne
IEJ Fnege



Or np ni donc Np n n _Npn ni 0

On garde la solutionpositive n NI Funi
Si Np ni n Np et alors p FÉ

On voitque les é libres proviennent
majoritairement du dopage

Et p ca m

11 Demême p NR et n FÉ

Les trous proviennent
majoritairement du dopage

12 Onn'ajoutepasdecharges en dopent donc
l'ensemblede la zonede jonction

reste électriquement neutre D'où Cale f24 O

13 div Ê
Les symétries et inveniences indiquent que

Î Eula m̂

D'où du E 1 IE
x la et ns f2 p o ÇI

En c

et on admetque le champ est
nul dans ces zones

Cefalo e pa ÎÎ E
En c

et En a Le 2fr c
D c taf

D où En L1 a

Enfer e f2 YI En cˢʰ

et En la La 0 Life
c 0 c 1212

D où En u 2
En

iô si x le ou 4 se

Conclusion Ê atte ê si In 10

u re ê si



14 Ê FedV1 En f1 et on choisit Vla o 0

ten si la en so

ÉÉ draft IT
LÀ ÉÉ

où

Ê È Ie c 0
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16 Pour a Le la zone est dopée au phosphore
et les atomes P s'ionisent

en Pt libérantun électron quimigre
vers la zone aco

Donc il en résulteune charge
a pasatome

de phosphore et comme il y en

a Ne pas a de volume alors f2 Nze

De la mêmemanière en Nne

17 Ni Ne alors La
Le

D'où V0 et ez Nae
L2 FÉ AIN L2 0,57mm

La largeur de la jonctionest
La la doncenviron 22
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