
MP2 DS 5 Physique

La durée est de 4 heures.
Les calculatrices sont autorisées.

Problème 1 Obtention de plomb à partir d’un minerai

Le plomb peut être obtenu par voie sèche à partir du minerai de sulfure de plomb appelé galène. On donne
ci-dessous les données thermodynamiques utiles :

Constante des gaz parfaits : R = 8, 31 J.mol−1 K−1

Masse volumique du plomb solide : ρ = 11350 kg.m−3

Températures de fusion sous une pression de 1 bar : Tf(Pb) = 596 K ; Tf(PbO) = 1161 K et Tf(PbS) = 1387 K

Données thermodynamiques à 298 K :

Composé Pb(s) PbO(s) PbS(s) O2( g) C(s) CO2( g) SO2( g)
Enthalpie standard de formation ( kJ.mol−1 ) 0 −219, 0 −120, 4 0 0 −393, 5 −296, 8
Entropie molaire standard (J.mol −1.K−1 ) 64,8 66,5 91,2 205,2 5,7 213,8 248,2

Enthalpie standard de fusion du plomb : à 596 K,∆fus H
0 = 4, 8 kJ.mol−1

Enthalpie standard de fusion du monoxyde de plomb PbO : à 1161 K,∆fus H
0 = 11, 7 kJ.mol−1

Données thermodynamiques à 1273 K : capacités thermiques molaires isobares en J · K−1 · mol−1

Composé PbS(s) O2( g) PbO(l) SO2( g) N2( g)
C0

p 49,5 29,4 45,8 39,9 29,1

On supposera que, dans le domaine de température étudié, ∆rH0 et ∆rS0 sont indépendants de la température
pour toutes les réactions chimiques envisagées.

Les phases solides sont non miscibles.

La préparation du métal est réalisée actuellement en deux étapes : le grillage du sulfure de plomb suivi de la
réduction du monoxyde de plomb.

Grillage du sulfure de plomb

Le sulfure de plomb est chauffé en présence de dioxygène. Une réaction d’oxydation (1) se produit :

PbS(s ou 1) + 3/2O2( g) = PbO + SO2( g)

1. Justifier pourquoi l’enthalpie standard ∆rH
0

1 et l’entropie standard ∆rS
0

1 de la réaction (1) sont
différentes pour T > 1161 K et T < 1161 K.

Calculer l’enthalpie standard ∆rH
0

1 et l’entropie standard ∆rS
0

1 de la réaction (1) à une température supérieure
à la température de fusion de l’oxyde de plomb PbO.

2. La réaction est-elle endothermique ou exothermique ? Commenter le signe de l’entropie standard de
réaction.
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3. Justifier comment évolue l’équilibre (1) si on augmente la température, toutes choses égales par ailleurs.
4. Donner l’expression de l’enthalpie libre standard ∆rG

0
1(T ) de la réaction en fonction de la température

T pour le domaine T > 1161 K.
5. Calculer la constante d’équilibre K1

0 de la réaction à 1273 K. Conclure.
6. Exprimer le quotient de réaction Q en fonction de la pression P exprimée en bar et des quantités de
matière n pour O2, n’ pour SO2 et N pour la totalité des gaz.
7. Comment évolue l’équilibre si on augmente la pression, toutes choses égales par ailleurs ?
8. On utilise de l’air pour effectuer la réaction. La présence de diazote favorise-t-elle la réaction à température
et pression fixées ? Pourquoi pensez-vous que les industriels prennent de l’air plutôt que du dioxygène pur ?

Les réactifs, c’est-à-dire le minerai et l’air (proportion molaire : 20% de dioxygène O2 et 80% de diazote N2), sont
portés à 1273 K pour réagir entre eux. Le caractère rapide de la réaction totale permet de formuler une hypothèse
d’adiabaticité.

9. En supposant que l’on part des proportions stœechiométriques, à quelle température seraient portés les
produits pris initialement à 1273 K ? Pourrait-on réaliser le grillage ?

Réduction du monoxyde de plomb
Elle est réalisée par du carbone à 873 K, selon la réaction (2)

2PbO(s) + C(s) = 2 Pb(l) + CO2( g)

10. D’après les tables thermodynamiques, l’enthalpie libre standard ∆rG0
2( T) de la réaction (2) en fonction

de la température, pour une température supérieure à la température de fusion du plomb liquide, vaut
∆rG02( T) = 54, 1 − 0, 221 T en kJ.mol−1. Calculer la constante d’équilibre K0

2 de la réaction à 873 K.
Conclure.
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COUPLAGE INDUCTIF NON RÉSONANT

A / Étude des bobines utilisées

Pour établir un couplage inductif non résonant entre une bobine émettrice et une bobine
réceptrice, on peut utiliser des solénoïdes ou des bobines « plates » 2D (voir figure 4).

Figure 4 – Bobines utilisées.

Considérons tout d’abord le cas d’un solénoïde de longueur ω et d’axe de révolution Oz,
comportant N spires circulaires jointives de rayon a, et parcourues par un courant d’inten-
sité variable i(t). On fait l’hypothèse d’être dans le cadre de l’Approximation des Régimes
Quasi-Stationnaires (ARQS) : on calcule le champ magnétique créé par des courants va-
riables i(t) comme en magnétostatique, par le théorème d’Ampère.
A1. Rappeler les équations locales de Maxwell relatives au champ magnétique εB.

Comment se simplifient-elles dans l’ARQS ?

A2. Dans le cadre de l’ARQS, indiquer comment on passe de l’équation locale concer-
née au théorème d’Ampère.

On suppose dans la suite le solénoïde « infini » et on cherche à exprimer le champ ma-
gnétique εB(M) en tout point M de l’espace, repéré par ses coordonnées cylindriques (r, θ, z).
On admet que le champ magnétique est identiquement nul à l’extérieur du solénoïde.
A3. Sous quelle(s) condition(s) l’approximation d’un solénoïde « infini » vous semble-

t-elle légitime ?

 L’électricité de demain pourra-t-elle se passer de fils électriques ? La nécessité actuelle 
de supprimer les fils et réduire l’encombrement, ou encore la multiplication des appareils 
électriques à faible consommation contribuent au développement des techniques et dispositifs 
de transmission d’énergie sans fil, inspirés des travaux pionniers de Nikola Tesla au début du 
XX esiècle. Les applications sont nombreuses et touchent divers domaines (voir figure 1) : 
de l’usage domestique (recharge d’appareils avec batteries, alimentation de petits appareils 
courants) au monde industriel (recharge de voitures électriques, applications diverses de la 
transmission de puissance, pour les trains par exemple), en passant par la médecine (apport 
d’énergie électrique aux implants, sans effectuer d’opérations chirurgicales lourdes).

3

Ikeda
Problème 2 : Transfert d’énergie sans fil



A4. En invoquant des arguments de symétrie et d’invariance de la distribution de
courants, déterminer la direction du champ εB(M), ainsi que la (ou les) coordon-
née(s) dont dépend(ent) son module.

A5. En précisant le contour d’Ampère choisi, montrer tout d’abord que le champ ma-
gnétique est uniforme à l’intérieur du solénoïde. En choissant un second contour
d’Ampère, déterminer le champ magnétique à l’intérieur du solénoïde en fonc-
tion de ω, N et i(t).

Intéressons-nous à présent au cas d’une bobine « plate », constituée (pour simplifier) de
N spires circulaires identiques, d’axe de révolution Oz et de rayon a, placées dans le plan
z = 0 et parcourues par un courant d’intensité i(t). On se place à nouveau dans le cadre de
l’ARQS, et on considère un point M de l’axe Oz, de cote z > 0.
A6. Déterminer, en justifiant votre réponse, la direction du champ magnétique εB(M)

au point M.

A7. Que dire du plan d’équation z = 0 d’un point de vue des courants ? Qu’en
déduire d’un point de vue du champ magnétique ? En déduire une relation simple
entre Bz(−z) et Bz(z).

On donne l’expression du champ magnétique créé par la bobine « plate » au point M :

Bz(z) =
µ0 Ni(t) a2

2 (z2 + a2)3/2

A8. Représenter l’allure de la fonction Bz(z). Exprimer le champ magnétique maxi-
mal Bz, max, et déterminer à quelle distance z1/2 de la spire le champ magnétique
vaut Bz, max/2, en fonction de a.

On donne sur la figure 5 les cartes de champ du solénoïde et de la bobine « plate »,
simulées à l’aide du logiciel FEMM (Finite Element Method Magnetics).

Figure 5 – Cartes de champ du solénoïde (à gauche) et de la bobine « plate » (à droite).

A9. Justifier les symétries et/ou antisymétries observées sur chacune de ces cartes
de champ.

A10.Sur la carte de champ de gauche, on remarque que les lignes de champ se
resserrent au sein du solénoïde, et qu’elles y sont approximativement parallèles.
Que peut-on déduire de ces observations topologiques ? Quelle propriété, relative
au flux du champ εB, permet de le confirmer ?
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B / Transfert de puissance : rendement de Yates

Modélisons à présent le transfert inductif de puissance entre deux bobines, comme celles
représentées sur la figure 6.

z

d

a

N2 spires

b

N1 spiresi(t)

Figure 6 – À gauche : système de transmission classique (émetteur et récepteur) utilisé
dans les chargeurs sans fil actuels. À droite : schéma et notations utilisées.

Une bobine émettrice « plate », de résistance électrique R1 et d’inductance propre L1,
comportant N1 spires circulaires de rayon a, est parcourue par un courant d’intensité

i(t) = I0 cos(ωt)

imposé par un générateur (non représenté sur la figure 6).
B1. Définir et exprimer la puissance instantanée reçue par la bobine émettrice de la

part du générateur, notée Preçue, en fonction de L1, R1, de l’intensité i(t) et de
sa dérivée première di/dt. En déduire la moyenne temporelle de cette puissance
〈Preçue〉 en fonction de R1 et I0.

Considérons également une bobine réceptrice « plate », de résistance électrique R2 et
d’inductance propre L2, comportant N2 spires circulaires de rayon b, située à une distance d
de la bobine émettrice. On cherche à définir et exprimer le rendement de transfert de puis-
sance entre les deux bobines, dans le cas d’un alignement parfait. On rappelle l’expression
du champ magnétique créé par la bobine émettrice en un point M(z) de l’axe Oz :

εB =
µ0 N1 i(t) a2

2 (z2 + a2)3/2
εuz

Pour simplifier, on suppose ce champ magnétique uniforme dans le plan contenant la bobine
réceptrice.
B2. Exprimer le flux Φ du champ magnétique créé par la bobine émettrice à travers

la bobine réceptrice, en fonction de i(t), a, b, d, N1 et N2.

B3. Le courant i(t) étant variable, il apparaît une force électromotrice (fem) e(t)
aux bornes de la bobine réceptrice. Quel phénomène est ainsi mis en évidence ?
Donner l’équation locale de Maxwell à l’origine de celui-ci.

B4. Après avoir nommé la loi utilisée, exprimer la fem e(t) en fonction de I0, ω, t,
a, b, d, N1 et N2. On négligera le flux magnétique propre du circuit récepteur
devant le flux extérieur.
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B5. En négligeant l’inductance propre L2 de la bobine réceptrice, en déduire la
puissance reçue par cette dernière de la part de la bobine émettrice, notée Pgéné,
puis sa moyenne temporelle 〈Pgéné〉 en fonction de I0, ω, a, b, d, N1, N2 et R2.

On définit le rendement de transmission de puissance par le quotient

η =
〈Pgéné〉

〈Preçue〉

B6. Montrer que le rendement peut se mettre sous la forme

η = k
µ0

2 N1
2N2

2 a4b4 ω2

R1R2 (d2 + a2)3

avec k un coefficient sans dimension à expliciter. Ce résultat constitue la loi de
Yates.

C / Modélisation du couplage : inductance mutuelle
On propose dans cette sous-partie une modélisation plus générale du couplage magné-

tique, s’affranchissant des hypothèses faites dans la sous-partie précédente. Le couplage
est quantifié par l’inductance mutuelle M entre les deux bobines, d’inductances propres
respectives L1 et L2 (voir figure 7).

L2

i1 i2

E R2

R1
M

L1

Figure 7 – Circuits couplés par mutuelle inductance.

C1. Rappeler la définition de M , ainsi que sa dimension.

C2. En appliquant la loi des mailles dans chacun des deux circuits, établir le système
d’équations électriques couplées vérifiées par les intensités i1(t) et i2(t).

C3. Montrer que ce système d’équations conduit au bilan de puissance

Ei1 = R1i1
2 + R2i2

2 +
dEmag

dt

avec Emag une quantité à exprimer en fonction de L1, L2, M , i1 et i2. Interpréter
ce bilan.

C4. On pose la variable adimensionnée x = i1/i2. Mettre Emag sous la forme

Emag =
1
2

i2
2 P (x)

où P (x) est un polynôme d’ordre 2 que l’on explicitera.

C5. En admettant que Emag est une quantité positive, montrer que l’inductance mu-
tuelle vérifie une inégalité de la forme M ≤ Mmax ; exprimer son majorant Mmax

en fonction de L1 et L2.

C6. Connaissez-vous d’autres applications de tels circuits couplés par mutuelle in-
duction, dans les domaines de l’industrie et de la vie courante ? Deux applica-
tions détaillées sont attendues.
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Problème 3    SEMI-CONDUCTEURS ET JONCTION PN 
 

Aucune connaissance sur les matériaux semi-conducteurs n’est requise pour traiter ce problème. 

 
123 mol 1002,6 −=AN  représente la constante d’Avogadro, 

et C 106,1 19−=e  représente la charge élémentaire. 

 

 
 

Modèle de Drude de la conduction électrique 
 

On considère un matériau conducteur dans lequel les électrons libres sont uniformément répartis 

dans le volume du matériau. On note en  le nombre par unité de volume  de ces électrons . Les 

interactions entre les  électrons sont négligées et celles entre les électrons et le réseau cristallin sont 

modélisées par une force de type frottement visqueux subie par chaque électron de masse m  selon 

la relation vectorielle v
m

f



−=  où   est une constante propre au matériau et v


 la vitesse d’un 

électron dans le référentiel lié au matériau conducteur. Un champ électrique E


 est appliqué dans le 

matériau. On négligera le poids de l’électron devant les autres forces. 

 

1.  Quelle est l’unité de   dans le Système International ? Justifier. 

 

2.  En appliquant le principe fondamental de la dynamique à un électron montrer que la vitesse d’un 

électron tend, en régime permanent, vers une constante que l’on précisera en fonction de E


, m ,   

et  e  la charge élémentaire ( e  valeur positive). 

 

3.  En déduire l’expression du vecteur densité volumique de courant électrique el
j


 en fonction de 

E


, m , en  et  .  Donner alors l’expression de la conductivité électrique du matériau en fonction 

des paramètres précédents. 

 

4.  Dans le cas du cuivre, chaque atome libère un seul électron qui participera à la conduction 

électrique.  

La densité du cuivre par rapport à l’eau est 9,8=d  et la masse molaire du cuivre est  
1molg 5,63 −=CuM . On note  la masse volumique de l’eau. 

Donner l’expression littérale du nombre d’électrons de conduction par unité de volume en  en 

fonction de d, , MCu et de la constante d’Avogadro NA.  

Effectuer l’application numérique.  

Comparer avec la densité électronique du silicium, semi-conducteur très répandu, qui est de l’ordre 

de 
319 cm 10 −
 à température ambiante. 

 

 

 

 

 

 

Résistivité du silicium en fonction de la température
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On réalise une pastille cylindrique de silicium comportant en  électrons de conduction par unité de 

volume. On mesure la résistance de cette pastille en fonction de la température et on en déduit la 

résistivité du silicium. 

 

5.  Rappeler la relation existant entre la résistance R  d’une pastille cylindrique de longueur   et de 

section S  et  la résistivité   du matériau. 

 

6.  Un dispositif permet d’abaisser la température du silicium. On mesure la résistivité du silicium 

entre 4,2 K (température de liquéfaction de l’hélium) et 12 K. On relève le tableau de mesures 

suivant : 

 

T (K) 4,2 4,6 5,0 5,4 6,2 7,0 

 (.m) 5,9.105 6,0.104 9000 1750 125 16,5 

T (K) 8,0 10,0 12,0 

 (.m) 2,35 0,15 0,024 

 

Montrer à l’aide d’une représentation graphique ou d’une régression linéaire, en utilisant la 

calculatrice, que la résistivité suit une loi du type : ( ) / =  B TT A e . 

Calculer B  et A . 

 

7.  Evaluer la résistivité du silicium à 300 K. La comparer à celle du cuivre qui est de l’ordre de 

m10 8 = −

Cu . 

 

 

En plaçant des impuretés dans un matériau semi-conducteur, on peut contrôler la résistivité 

électrique. Cette dernière varie de façon considérable en fonction de la concentration en 

impuretés : c’est le dopage. 

 

Les porteurs de charge 
 

Modèle de semi-conducteur : 

Pour comprendre la variation de la résistivité du silicium avec la température, il faut admettre que 

les électrons dans le silicium ne peuvent être que dans « deux états » : soit ils sont libres (électrons 

conducteurs), soit ils sont liés (électrons de valence). Pour qu’un électron passe de l’état lié à l’état 

libre, il faut lui fournir de l’énergie. Il laisse alors une place vacante dans l’ensemble des électrons 

liés : c’est ce qu’on appelle un trou. 

 

9.  Que vaut la « charge électrique » d’un trou en fonction de la charge élémentaire e  ? 

 

On montre que le mouvement collectif des électrons de valence (très nombreux) peut être décrit par 

celui de l’ensemble des trous (beaucoup moins nombreux). De ce point de vue les trous peuvent être 

assimilés à des porteurs de charge indépendants et distincts des électrons de conduction.  

On note n  le nombre d’électrons conducteurs par unité de volume et p le nombre de trous par unité 

de volume. On admettra que le produit pn   est une constante au carré, notée 
2

in , dépendant de la 

température et du matériau : 
2

inpn =  . 

10.  On parvient à fabriquer un matériau semi-conducteur à base de silicium dans lequel quelques 

atomes de bore (symbole B) ou de phosphore (symbole P) se substituent à des atomes de silicium, et 
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ce, de manière uniforme sur tout le volume du matériau. On parle de dopage au bore ou  au 

phosphore. Soit BN  (respectivement PN ) la densité volumique d’atomes de bore (respectivement  

de phosphore) présents dans le matériau . 

 

On donne un extrait du tableau périodique des éléments : 

 

                                                H                                                         He 

Li    Be                   B   C   N   O   F    Ne 

                                                Na   Mg                 Al  Si   P    S  Cl   Ar 

 

Combien d’électrons de valence maximale possèdent le silicium, le bore et le phosphore ? 

 

On admet que le phosphore perd un électron : quel ion est formé ? 

On admet que le bore gagne, quant à lui, un électron : quel ion est formé ? 

 

11.   Dans le cas du dopage au phosphore (dopage N), augmente-t-on la densité d’électrons ou de 

trous ? Sachant que le matériau est électriquement neutre, que vaut la somme PNp +  en fonction 

de n  ? En se rappelant que 
2

inpn = , exprimer n . Que devient cette expression si Pi Nn   ? 

Commenter. En déduire l’expression de p . 

12.  Donner les expressions de n et p dans le cas du dopage au bore (dopage P), avec Bi Nn  .  

 

 

Electrostatique d’une jonction PN à l’équilibre 
 

Lorsqu’un semi-conducteur présente, dans une région très localisée de l’espace, une variation très 

brutale de la concentration en dopant, voire un changement de la nature du dopant, on dit que l’on a 

une jonction. Au voisinage de la jonction, dans une région dite « zone de charge d’espace », le 

cristal acquiert une distribution de charge électrique non nulle que l’on se propose d’étudier. Les 

propriétés qui en résultent sont à la base de la caractéristique des diodes, des transistors et de tous 

les circuits intégrés. 

 

13.  On supposera que dans le silicium on peut encore appliquer les lois de l’électrostatique à 

condition de remplacer 0  par r = 0  où r  est la permittivité relative du silicium. On suppose 

que la densité volumique de charge c autour d’une jonction située dans le plan 0=x  a l’allure 

suivante : 

 

 

 

0         Si

0  0      Si

0  0      Si

0          Si

2

22
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1

=

=

=−

=−

c

c

c

c

xL

Lx

xL

Lx









 

 

 

  

La jonction est suffisamment large pour supposer que la distribution de charge est totalement 

invariante par toute translation dans le plan Oyz . 

 

c 

L2 

 

 O x 

-L1 

 

 
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Sachant que la distribution de charges est globalement neutre, établir la relation vérifiée par 

2121 et  ,, LL . 

 

On admettra que, en dehors de la zone de charge d’espace, le champ électrique est nul en tout point 

d’abscisse x telle que 1Lx −  et 2Lx    . 

 

14. Rappeler l’équation de Maxwell – Gauss où l’on remplacera 0  par r = 0 . 

Déterminer alors le champ électrique en tout point M  appartenant à la zone de charge d’espace 

( )21 LxL − . On distinguera entre les diverses régions de l’espace suivant les valeurs de x .  

Représenter graphiquement l’allure de la composante selon x du champ électrique en fonction de x . 

 

15.  En déduire l’expression du potentiel électrostatique V  dans les différentes régions de l’espace. 

On choisira l’origine des potentiels dans le plan 0=x .   

Représenter graphiquement V  en fonction de x . 

 

16.  Donner l’expression de la différence de potentiel ( ) ( )120 LVLVV −−=  entre deux points situés 

de part et d’autre de la zone de charge d’espace. 

 

17.  La région ( )0x  a été dopée avec du phosphore à raison de 
21

2 106,1 =N  atomes P par m3, 

tandis que la région ( )0x  a été dopée avec du bore avec un nombre d’atomes B par unité de 

volume 1N . On considérera que 21 NN  . Dans la zone de charge d’espace, chaque atome P est 

ionisé en P+. Les électrons ainsi libérés traversent spontanément le plan ( )0=x , et chaque atome B 

situé dans la zone de charge d’espace, capte un électron se transformant ainsi en ion B-. On a réalisé 

une jonction PN. 

 

En déduire 21 et    en fonction de e (la charge électrique élémentaire), 1N  et 2N . 

 

18.  Le système ainsi constitué est une diode à jonction dont la tension seuil est voisine de 0V . 

 Déterminer 2 L   en fonction de 
0 2

 ,  ,   et V e N . 

AN :   V 3,00 =V  
110 mF 104,1 -= −   et C106,1 19−=e .  

Que vaut la largeur totale de la zone de charge d’espace   
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