
Interaction laser plasma à haut éclairement

Au début des années 2000, des mécanismes de génération d’impulsions électromagnétiques très
brèves et de forte intensité, jusque là théoriques, ont été concrétisés sur le plateau de Saclay
notamment par le Laboratoire d’Optique Appliquée de l’Ensta ParisTech et le Laboratoire
de Physique à Haute Intensité du Cea.

Lorsqu’un faisceau laser de forte puissance est focalisé sur de la matière (gaz ou solide), cette
dernière est ionisée quasi–instantanément et se transforme alors en un plasma globalement
neutre. L’interaction entre le champ électromagnétique du laser et le plasma ainsi formé met en
jeu une physique particulièrement riche et complexe. Sous certaines conditions, un rayonnement
laser de haute fréquence (UV ou X) peut être émis par ce plasma. Dans le domaine temporel,
ce rayonnement peut être associé à des impulsions très brèves dont la durée se situe dans la
gamme des femto-secondes (10−15 s) voire atto-secondes (10−18 s). Les applications de ce type
de laser sont maintenant largement mises en place en recherche, dans l’industrie et dans le
domaine des applications biomédicales. Nous proposons d’étudier certains de ces mécanismes
d’émission issus de l’interaction laser-plasma.

Hormis le nombre i tel que i2 = −1, les nombres complexes sont soulignés : z ∈ C. Les vecteurs
seront traditionnellement surmontés d’une flèche, par exemple E⃗ pour un champ électrique ;
sauf s’ils sont unitaires et seront alors surmontés d’un chapeau, par exemple ûx tel que ∥ûx∥ = 1.
Les résultats numériques attendus sont des ordres de grandeur comportant au plus deux chiffres
significatifs. Quatre documents d’information sont rassemblés à la fin du sujet.

I. — Génération d’harmoniques dans les gaz

I.A. — Champ laser et champ coulombien.

Cette partie s’appuie principalement sur le document i.

On adopte dans un premier temps une description semi-classique de l’atome d’hydrogène dans
le référentiel du proton supposé fixe :

— la position de l’électron est repérée par le vecteur r⃗ et sa vitesse par le vecteur v⃗ ;
— l’électron est assimilé à un point matériel de masse m ≃ 9.10−31 kg et de charge q = −e

où e = 1,6.10−19 C désigne la charge élémentaire ;
— l’électron est animé d’un mouvement circulaire, de rayon r = ∥r⃗∥ et de vitesse v = ∥v⃗∥ ;
— on néglige le poids de l’électron ;
— la norme du moment cinétique est quantifiée : mrv = n! où ! = h

2π ≃ 10−34 J · s désigne
la constante de Planck réduite et n est un entier naturel non nul.

1 — Donner l’expression de la force électrique coulombienne subie par l’électron, due au
proton. Montrer qu’il s’agit d’une force centrale qui dérive d’une énergie potentielle Wp dont
on déterminera l’expression.

2 — Déterminer l’expression de l’énergie mécanique Wm de l’électron sur son orbite circu-
laire de rayon r, en fonction de r, e et ε0 = 9.10−12 F·m−1. Montrer que le rayon de la trajectoire
s’écrit sous la forme r = a0n2 où l’on exprimera a0 en fonction de ε0, h, m, et e. Préciser la
valeur de n lorsque l’électron est dans son état fondamental. Calculer la valeur numérique en
électron-volt de l’énergie mécanique de l’état fondamental notée −W0.
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3 — On donne a0 =
1
2 .10

−10 m, calculer la valeur de la norme du champ électrique coulom-
bien Ec ressenti par l’électron dans son état fondamental. Calculer la puissance P de l’impul-
sion laser. Déterminer, notamment en fonction de P , les expressions de l’amplitude du champ
électrique laser avant son passage à travers la lentille Eℓ = E0(z = −f ′) et au niveau du foyer
Ef = E0(z = 0). En utilisant les valeurs numériques (fournies dans le tableau du document i
relatives à la cible ≪ gaz ≫), comparer Ec et Ef . Que peut-on en conclure ?

I.B. — Un mécanisme en trois étapes

Cette partie s’appuie principalement sur le document ii.

Pour simplifier le problème, on limite l’étude au mouvement de l’électron le long d’un axe (O,ûx)
perpendiculaire à (O,ûz) et x représente la coordonnée de l’électron le long de l’axe (O,ûx).
L’impulsion laser est modélisée par une onde électromagnétique plane. Le champ électrique du
laser, au niveau de l’atome d’hydrogène situé au foyer du faisceau s’écrit

E⃗(z,t) = Ef cos (ω0t− k0z) ûx

pour 0 ≤ t ≤ T , avec ω0 = 2πν0 = k0c =
2π
λ0
c. Le noyau, constitué d’un proton, est situé en O,

il est supposé fixe.

4 — Justifier que pour l’étude du mouvement de l’électron, on peut négliger le terme k0z
dans l’expression du champ électrique du laser.

5 — Donner l’expression de l’énergie potentielle d’interactionWp entre le proton et l’électron
en fonction de l’abscisse x. Vérifier qu’elle correspond bien à l’allure donnée sur la figure ii.a

6 — Donner l’expression de la force de Lorentz subie par l’électron et causée par le champ
électromagnétique du laser. Rappeler la relation de structure pour une onde électromagnétique
plane harmonique. On la supposera applicable localement. A quelle condition, supposée vérifiée
par la suite, cette force est-elle conservative ? Déterminer, en fonction de e, Ef , ω0, t et x,
l’énergie potentielleWp,las(x,t) associée à cette force ainsi que l’expression de l’énergie potentielle
totale

Wp,tot(x,t) = Wp(x) +Wp,las(x,t).

Préciser le sens du champ électrique dans la situation de la figure ii.b .

7 — Justifier qu’il y a deux instants privilégiés par cycle optique où l’ionisation, c’est-
à-dire la traversée de la barrière de potentiel, est la plus facile. Déterminer x̃0, la position
correspondant au maximum de Wp,tot selon x. Déterminer l’expression de Ef,i correspondant à
une ionisation en x = x̃0 à l’un des instants privilégiés. Cette ionisation est-elle possible dans
les conditions expérimentales précisées dans le tableau du document i, avec une cible ≪ gaz ≫ ?

On s’intéresse maintenant à la deuxième étape du mécanisme représentée sur la figure ii.c .
L’ionisation a lieu à un instant ti > 0. On considère qu’elle confère une vitesse négligeable
(v(t = ti) ≃ 0) à l’électron et qu’elle s’effectue au niveau du noyau (x(t = ti) ≃ x0 ≃ 0). Pour
t ≥ ti, l’électron n’est soumis qu’au champ électrique du laser E⃗(t) = Ef cos (ω0t) ûx .

8 — Ecrire l’équation du mouvement, puis déterminer, en fonction de e, Ef , m, ω0, t et ti,
l’expression de la vitesse ẋ(t), de la position x(t) pour t ≥ ti. A posteriori, quelle condition doit
être vérifiée pour que x0 soit bien négligeable lors de l’étude du mouvement de l’électron dans
le champ laser.
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On s’intéresse enfin à la troisième étape du mécanisme représentée sur la figure ii.d .

9 — Déterminer l’expression de l’énergie cinétiqueWc de l’électron lors de sa recombinaison
avec le noyau à un instant t > ti. Exprimer sa valeur moyenne sur une période ⟨Wc⟩ en fonction
de e, Ef , m et ω0. On admet que l’énergie cinétique maximale de l’électron est donnée par la
relation Wc,max ≃ 3,2 ⟨Wc⟩ et on donne ⟨Wc⟩ ≃ 60 eV. Lors de cette recombinaison, l’électron
≪ retombant ≫ dans son état fondamental, un photon est émis. On interprète cette émission
comme étant celle d’une impulsion brève dont l’étendue du spectre correspond à la fréquence
maximale possible d’un photon issu de la recombinaison. Estimer un ordre de grandeur de la
durée δT de cette impulsion.
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Figure 1 – Graphe
du signal s(0,t)

L’émission de ces impulsions lumineuses très brèves a lieu deux fois par
période : une fois après une ionisation du côté des x > 0 et une autre
fois après une ionisation du côté des x < 0.
On modélise le train d’impulsions émis par l’atome par un signal s(x,t) =
s+(x,t)+s−(x,t). Au niveau de l’atome, on considère que s+(0,t) = s0(t)
et s−(0,t) = −s0(t−

T0

2 ) où la fonction s0(t) est périodique de période
T0. Une allure possible de s+(0,t) et s−(0,t) est donnée par la figure 1.
On souhaite déterminer les pulsations présentes dans le spectre associé
au signal s(t).

10 — Justifier le fait qu’il suffit de raisonner sur un signal sinusöıdal : s0(t) = S0 cos (ωt).
Donner les expressions des signaux s+(x,t) et s−(x,t) reçus à une distance x de l’atome. A
quelle condition reliant ω à ω0 =

2π
T0
, le signal s(x,t) est-il d’amplitude maximale ? Préciser les

caractéristiques spectrales du train d’impulsions brèves émises lors de l’interaction d’un laser
avec un plasma peu dense.

II. — Génération d’harmoniques sur un miroir plasma

Cette partie s’appuie principalement sur le document iii.

Dans le cas où la cible est initialement un solide, l’émission d’impulsions brèves se fait par
conversion d’énergie entre les oscillations d’un plasma et une impulsion lumineuse brève.
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II.A. — Pulsation propre

Dans un premier temps on souhaite déterminer la pul-
sation propre des oscillations d’un plasma dans un pro-
blème unidimensionnel. Initialement, pour t < 0, le
plasma est neutre, immobile et localisé entre les abscisses x = −L/2 et x = +L/2. Le vide
règne de part et d’autre du plasma. On note n la densité particulaire des électrons, de masse m
et de charge q = −e. On étudie le mouvement d’ensemble des électrons consécutif à une per-
turbation se produisant à l’instant t = 0. On considère que les ions restent fixes et qu’à chaque
instant t > 0 la distribution des électrons reste homogène sur une longueur L. Etudier le mou-
vement du nuage revient alors à étudier celui d’un électron situé au centre de la distribution, à
l’abscisse X(t). L’effet de la perturbation peut donc se résumer à un déplacement impulsionnel
du nuage électronique par rapport aux ions : pour t < 0 on a X(t) = 0 et X(0) = X0 > 0.

11 — Tracer l’allure de la densité volumique de charge ρ(x). Déterminer le champ électrique
qui règne à l’intérieur du plasma, où la densité volumique de charge est nulle. Déterminer
l’équation du mouvement d’un électron du plasma et en déduire que la pulsation propre du

plasma est donnée par la relation ωp =
√

ne2

mε0
.
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II.B. — Propagation dans un plasma homogène

On souhaite étudier la propagation d’une onde électromagnétique plane, de vecteur d’onde k⃗
et de pulsation ω, dans un plasma homogène au sein duquel on néglige l’agitation thermique.
On cherche les champs électrique et magnétique sous la forme E⃗ = ℜe(E⃗) et B⃗ = ℑm(B⃗), avec

E⃗ = E⃗0e
i(ωt−k⃗·r⃗) et B⃗ = B⃗0e

i(ωt−k⃗·r⃗).

12 — Rappeler les équations de Maxwell. Le plasma étant supposé peu dense, localement
neutre et le mouvement des électrons étant supposé non-relativiste, exprimer la conductivité
complexe du milieu puis déterminer l’équation de propagation d’une onde électromagnétique
dans le plasma. Montrer que la relation de dispersion s’écrit ω2 = ω2

p + k2c2. La pulsation ω
étant fixée, en déduire qu’à partir d’une certaine densité particulaire électronique critique nc,
que l’on explicitera, la propagation n’est pas possible dans le plasma. Qu’advient-il alors de
l’onde électromagnétique ?

On s’intéresse maintenant à la propagation, sous incidence normale, de l’onde électromagnétique
dans la zone hétérogène de la surface du plasma. Cette zone de transition entre le vide et
l’intérieur homogène est modélisée par une évolution exponentielle de la densité particulaire
électronique décrite sur la figure iii.b . On considère que la relation de dispersion établie à la
question précédente est encore valable, mais avec ωp = ωp(x).

13 — Déterminer l’abscisse xc correspondant à la réflexion de l’onde électromagnétique.

On reprend la situation de la question précédente à l’exception notable du fait que l’onde élec-
tromagnétique arrive désormais sur la surface avec un angle d’incidence β. On s’intéresse à la
propagation de cette onde dans le plan (xOy). La relation de dispersion précédente est toujours
supposée valable.

14 — Justifier que la composante du vecteur d’onde le long de la surface, c’est-à-dire la
composante ky, se conserve au cours de la propagation. En déduire l’abscisse xr de réflexion
de l’onde électromagnétique en fonction de xc, L et β. Comparer ce résultat avec celui obtenu
sous incidence normale.

II.C. — Excitation d’ondes plasma à la surface.
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Figure 2 – Cas 1D

On modélise dans cette partie la seconde étape du mécanisme décrit
dans le document iii. Dans un premier temps, on raisonne sur une
seule dimension d’espace : x. On suppose qu’un paquet d’électron
traverse la surface vers les x > 0 avec une vitesse v⃗ = vûx constante.
On choisit l’origine des temps lorsque le paquet passe en x = −3L.
Lors de son passage, il excite localement des ondes plasma (voir
figure 2) qui se mettent à osciller comme dans la partie II.A avec
X(x,t) = X0 cosφ(x,t).

15 — Donner l’expression de l’instant t0(x) de passage du pa-
quet d’électron à l’abscisse x. Déterminer, pour t > t0(x), l’expres-
sion de la phase φ(x,t) en un point d’abscisse x. On prendra φ(x,t = t0(x)) = 0 et on exprimera
le résultat en fonction de t, t0(x) et ωp(x) puis en fonction de t, v, L, x et ωmax, où ωmax désigne
la pulsation plasma associée à la densité particulaire maximale nmax.

On définit le vecteur d’onde des oscillations plasma k⃗p = −gradφ(x,t) et on admet que les

oscillations plasma ne peuvent émettre une onde électromagnétique que lorsque k⃗p · ûx = 0.

16 — Montrer que les oscillations plasma peuvent effectivement émettre un rayonnement
mais qu’elles n’auraient pas pu le faire si elles avaient été excitées par un paquet d’électrons se
déplaçant vers les x < 0.
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On reprend l’étude de la question 16 mais en la traitant
à deux dimensions. Pour simplifier, on suppose que le
paquet d’électrons, de vitesse v⃗ = vûx, injecté en M0

sous l’effet du laser vers l’intérieur du plasma, passe par
l’abscisse x = −3L à l’instant même où le front d’onde
du laser arrive en M0 (voir ci-contre).

17 — Déterminer le décalage temporel entre les ar-
rivées du front d’onde laser aux points M0 et M . En
déduire l’expression du temps t0(x,y) du passage du pa-
quet d’électrons en un point (x,y) de la zone hétérogène.
En reprenant la condition d’émission de la question pré-
cédente, avec désormais φ = φ(x,y,t), montrer que les
points d’émission sont localisés sur un droite que l’on ca-

ractérisera. Expliquer pourquoi l’on parle d’≪ Emission Cohérente de Sillage ≫ (ECS). Conclure
cette partie en précisant les propriétés remarquables du spectre de l’ECS.

III. — Interaction d’une impulsion avec une feuille mince

Cette partie s’appuie principalement sur le document iv.

L’impulsion laser est celle décrite dans le document i dans le cas d’une cible solide.
On étudie l’effet de l’expansion du plasma dans le vide sur le spectre du rayonnement émis afin
d’estimer un ordre de grandeur de la température du plasma dans un modèle simplifié.

18 — Justifier que si la température θe du plasma est assez élevée, alors on pourra, en
première approximation, modéliser le plasma comme un gaz parfait. Montrer alors que la
température θe du plasma reste inchangée pendant l’expansion du plasma dans le vide.

19 — Déterminer l’expression de nL,max en fonction en de δ, L et de la densité particulaire
électronique n0,max avant expansion. En déduire l’expression de la pulsation plasma maximale
ωL,max en fonction de δ, L et de la pulsation plasma ω0,max associée à la densité particulaire
n0,max. Pour des éventuelles applications numériques, on prendra par la suite ω0,max ≃ 18,7ω0.

On suppose dans un premier modèle que la température θe des électrons du plasma est indé-
pendante de l’épaisseur δ de la cible choisie.

20 — Estimer dans ce modèle et à partir de la figure iv.b, un ordre de grandeur de la
température électronique θe du plasma.

On suppose dans un second modèle que l’énergie cinétique totale des électrons du plasma ne
dépend pas de l’épaisseur du plasma. On note δ0 l’épaisseur de la feuille la plus épaisse lors de
l’expérience (δ0 = 100 nm) et L0 la longueur caractéristique du gradient de ce plasma d’épaisseur
δ0.

21 — Comment varie alors la température électronique θe du plasma avec l’épaisseur δ ?
Déterminer l’expression de ωL,max en fonction de δ, ω0,max, δ0 et L0. Que penser de ces deux
modèles compte-tenu des spectres expérimentaux de la figure iv.b ?
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Document i : Modélisation du faisceau laser incident

Le faisceau laser est modélisé de la façon suivante :
.(/0 !)
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Fig. i.a – Amplitude laser

— L’amplitude du champ laser est constante durant la durée
de l’impulsion T = 50 fs (1 fs = 10−15 s) et elle est nulle
avant et après cette impulsion (Fig i.a). La période des os-
cillations du champ laser est notée T0 et correspond dans
le vide à une longueur d’onde λ0 = 800 nm. L’énergie to-
tale de l’impulsion laser est WT .

— Le faisceau présente une symétrie cylindrique d’axe (Oz).
Dans un plan transverse (z = constante), l’éclairement
I(r,z) est uniforme dans un disque de rayon R(z) et il est
nul au-delà (fig i.b). On rappelle la relation entre l’éclairement I(r,z) (en W · m−2) et
l’amplitude du champ laser E(r,z) : I(r,z) = 1

2ε0cE(r,z)2 où ε0 désigne la permittivité
du vide et c = 3.108 m · s−1 la célérité de la lumière dans le vide. On notera I0(z) et
E0(z) l’éclairement et le champ électrique sur l’axe r = 0.
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— Le faisceau est focalisé, par une lentille de dis-
tance focale f ′ et de diamètre égal à celui du
faisceau laser D, sur une cible (≪ gaz ≫ ou ≪ so-
lide ≫). L’angle α est le demi-angle au sommet
du cône sous lequel est vue la lentille depuis la
cible, placée au foyer O (fig. i.c).

— L’allure du faisceau au voisinage du foyer O est
représentée sur la figure i.d , il est caractérisé

par les relations z0 = πR2
0

λ0
, tanα ≃ λ0

πR0
et

R(z) = R0

√
1 +

(
z
z0

)2

.

Les conditions physiques expérimentales sont
rassemblées ci-contre.

Document ii : Cas où la cible est un ≪ gaz ≫

La cible étant un gaz, on peut, pour comprendre le mécanisme d’émission d’impulsions atto-
secondes, se ramener à l’interaction d’un champ électrique laser avec un atome, par exemple
l’hydrogène. Avant l’arrivée de l’impulsion laser, l’électron de l’atome d’hydrogène est ≪ au
repos ≫ dans son état fondamental caractérisé par une énergie potentielle négative −W0 . On
représente, en mécanique quantique, l’électron par un paquet d’ondes stationnaires. (Fig ii.a)

Page 6/9 Tournez la page S.V.P.



80

$

8 $9( )

Electron
à l’état

fondamental

0 $

8 $9( )

ionisation

$

80 8080

$

8 $9( )

8c

accélération

$

8 $9( )

8c

photon

8080
recombinaison

.aii
.bii

.cii .dii

Dans le cadre d’un modèle semi-classique qui donne des résultats satisfaisants, on peut décomposer
le mécanisme d’émission d’impulsions en trois étapes :

— Première étape (Fig ii.b) : sous l’influence du champ laser, le puits de potentiel dans
lequel se trouve l’électron de l’atome d’hydrogène est modifié et la hauteur de la barrière
de potentiel s’annule. L’électron s’extrait alors de l’attraction coulombienne due au noyau
atomique. En réalité l’ionisation peut avoir lieu par effet tunnel avant l’annulation de la
barrière de potentiel. Nous n’étudierons pas cette possibilité dans ce problème.

— Deuxième étape (Fig ii.c) : l’électron, libéré de l’attraction du noyau, est accéléré par le
champ laser. Il peut revenir vers le noyau avec une énergie cinétique Wc

— Troisième étape (Fig ii.d) : lors de son retour sur le noyau, l’électron se recombine avec
le noyau et émet un photon d’énergie hν.

Les trois étapes de ce mécanisme se déroulent au cours d’un cycle optique du laser dont la
période est notée T0.

Document iii : Cas où la cible est ≪ solide ≫

$

Cible

Laser incident

Laser réfléchi

impulsions brèves
©

*

*

Fig. iii.a – Miroir

Lorsque la cible est un ≪ solide ≫, le plasma formé dès le début de
l’arrivée de l’impulsion laser est très dense. Comme la cible est totale-
ment ionisée, la densité particulaire en électron ne vaut : ne = Z×ni

où ni est la densité particulaire atomique du solide et Z le nombre
de charge de l’élément.
Le faisceau laser peut s’y réfléchir comme sur un miroir. On parle
alors de ≪ miroir plasma ≫. Les impulsions brèves sont émises, lors
de l’interaction du faisceau laser avec ce ≪ miroir plasma ≫, dans
la direction du faisceau réfléchi. On considère que cette direction

satisfait les lois de Descartes de l’optique géométrique (fig iii.a).
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La surface du ≪ miroir plasma ≫ présente une très
forte hétérogénéité de densité particulaire entre le
vide (à l’extérieur) et une région très dense et ho-
mogène (à l’intérieur). On modélisera cette densité
particulaire en électrons par une fonction exponen-
tielle (fig iii.b).

ne(x) =

⎧
⎨

⎩

0 pour x < −3L
nmaxex/L pour −3L ≤ x < 0
nmax pour x ≥ 0

$
3¡ &

0

Vide Plasma
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¡&

% $:( )

Surface
hétérogène

Fig. iii.b – Transition de ne

La densité particulaire des ions est de la même forme afin que le plasma soit localement neutre
avant arrivée de l’onde électromagnétique. On suppose que nmax, qui correspond à la densité
particulaire électronique lorsque la cible est totalement ionisée est supérieur à nc.

Le mécanisme d’émission que nous allons décrire est appelé Emission Cohérente de Sillage.
Pour être efficace ce mécanisme nécessite que le faisceau laser incident arrive de façon oblique
sur le ≪ miroir plasma ≫. On note β l’angle d’incidence sur la surface plane (x = 0) de la cible
devenue un ≪ miroir plasma ≫.

Figures extraites de la thèse de Cédric Thaury - 2008
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Ce mécanisme peut être décrit en trois étapes :
— Première étape : Les électrons, de la surface du miroir plasma, sont arrachés par le champ

électrique du laser (fig iii.c), puis renvoyés par paquet vers le plasma (fig iii.d)
— Deuxième étape : Lors de la traversée de la surface hétérogène du miroir plasma, les

paquets d’électrons excitent des oscillations plasma (à la fréquence plasma locale ωp(x)).
Du fait de l’incidence oblique, la superposition des paquets d’électrons formés à différents
points de la surface résulte en un front de densité oblique qui se propage dans le plasma
(fig iii.e et fig iii.f)

— Troisième étape : Ces oscillations plasma émettent une impulsion lumineuse attoseconde
dans la direction du faisceau réfléchi lorsque le front des oscillations plasma est perpen-
diculaire à la surface du miroir plasma (fig iii.d)

Ce mécanisme se répète à chaque cycle optique du laser (de période T0).
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Document iv : Cas où la cible est une ≪ feuille mince ≫
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Fig. iv.a – Profil

On s’intéresse au cas où l’épaisseur du miroir plasma est na-
nométrique (de 10 nm à 100 nm). Dans ce cas, la totalité de
la cible est vaporisée et ionisée pour former un plasma. L’ex-
pansion de ce plasma dans le vide a pour conséquence une
diminution de la densité particulaire maximale de la cible.
L’allure du profil de densité particulaire électronique avec et
sans expansion est reportée sur la figure iv.a. On note δ l’épais-
seur de la cible, et L la longueur caractéristique de l’hétérogé-
néité de densité aux surfaces. Cette dernière longueur dépend
de la température θe du plasma et de la durée T de l’impulsion
laser incidente. On peut l’estimer par une relation de la forme

L = csT avec cs =
√

ZkBθe
mi

où kB = 1,4.10−23 J ·K−1 désigne la

constante de Boltzmann, mi la masse ionique et Z le nombre
de charge de l’atome. La cible est ici en carbone avec Z = 6 et mi = 2.10−26 kg. On peut estimer
que l’énergie cinétique moyenne d’un électron du plasma est égale à 3

2kBθe.
Nous modéliserons le profil de densité particulaire des électrons nL(x) de la façon suivante :
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Fig. iv.b – Spectres

nL(x) =

⎧
⎨

⎩

nL,maxex/L pour x < 0
nL,max pour 0 < x < δ
nL,maxe−(x−δ)/L pour δ < x

Dans ce modèle l’épaisseur δ de l’intérieur homogène
du plasma ne varie pas pendant l’interaction.
Lorsque l’on fait varier l’épaisseur δ de la cible, on
observe que l’étendue du spectre varie. L’harmo-
nique maximale du spectre augmente avec l’épais-
seur du miroir plasma (fig iv.b).

FIN DE L’ÉPREUVE
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