[CORRIGE « LASER PLASMA A HAUT ECLAIREMENT » ]

I. — GENERATION D’HARMONIQUES DANS LES GAZ

A. — Champ laser et champ coulombien
Q1 - La force électrique coulombienne exercée par le proton sur I’électron est F= —#7 .Clest
une force centrale, de centre le proton, qui dérive de W), telle que F = —gr—alcin = —%T[ r» Ce qui
conduita [ W), = —% (origine a I'infini).

Q2 - Lénergie mécanique est W, = W+ Wy, avec W, = %mv2 I'énergie cinétique de I'électron. Le PFD
. PRI Lps . . . — e 2 &2
appliqué a I'électron dans le référentiel du proton, en projection sur u,, s'écrit: —m-- = — — Tneqr?’ C€

qui conduita v = ¢ . Onendéduit: | W, = <0 | (étatlié).
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La quantification proposée pour le moment cinétique (modele de Bohr) s’écrit mrv = nh, ce qui donne
via I'expression de v :
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Dans I'état fondamental et —Wo(eV) = — 77 = — g, mz- On obtient | —Wy = —10 eV |, cohérent

avec la valeur « attendue » de —13,6 eV pour 'atome d’hydrogene.

Q3 - Le champ électrique ressenti par I'électron est celui créé par le proton, ce qui donne

E,= —%—5 =5x10" V.m~! | dans I'état fondamental.
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D’apres le document 1 I'énergie totale de I'impulsion laser Wr est délivrée pendant une durée T, ce qui

donne la puissance | P = % =20 GW | (valeurs pour un gaz).

eAvant la lentille le faisceau a un diameétre D, donc I'éclairement I (uniforme) est tel que P = nDTZI .
D’apres I'expression liant I au champ, on en déduit 'amplitude du champ électrique avant la lentille :
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Au foyer le faisceau a un rayon R (waist), que 'on obtient via la figure 1.c et la relation fournie tana =

A . Aof! . N L .
]Q, =~ n—IgO, soit Ry = no—lf;. Ensuite on procede comme précédemment, ce qui donne :

8P 8mPD? He
Er= 5= 5o 2x10°"V-m
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Ce champ est du méme ordre de grandeur que celui ressenti par I'électron : le faisceau va pouvoir
ioniser la matiere de la cible, ce qui n’était pas possible avant la focalisation.

A. — Un mécanisme en trois étapes

Q4 - On travaille a I’échelle de I'atome donc |z| = ay, ce qui donne | |kyz| = 2’/{:" ~4x107* <27 | :0on

peut donc négliger le terme en kyz.




ce qui

2
Q5 - Lénergie potentielle d’interaction est celle de la question 1 avec r = |x| : W), = —m

correspond bien aux courbes de la figure I1.a (allure d’hyperboles).

16 - Laforce de Lorentz est ? =-e (f(z, HD+7T A E(z, t)) . Par ailleurs la relation de structure d'une
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OPPH se propageant selon z croissant dans le vide est B=

Cette force dérive d'une énergie potentielle si on peut négliger la contribution magnétique devant la
contribution électrique, ce qui est le cas pour % « 1; larelation de structure donne alors (onde trans-

verse donc B = E/c¢) la condition v « ¢, c’est-a-dire qu'il faut des | électrons non relativistes | . Dans ce

cas, la force peut s’écrire F = —grad W), 155 avec | Wy, 1as = eEfrxcos(wot) | (on peut choisir la constante

nulle en x = 0), et donc:

2
W, =——+eErxcos(wpl)
p,tot 4n50|x| f 0

Dans le figure IL.b le champ est dirigé dans le | sens des x décroissants | pour que I'électron aille vers la
droite. La courbe en pointillés correspond manifestement a W), 155 (cosinus négatif ici).

Q7 - Le franchissement de la barriére est facilité quand | cos(wg?)| = 1, c’est-a-dire quand I'action du
champ électrique de I'onde est la plus importante, donc :
¢ au début du cycle (¢ = nTp), I'électron est alors extrait par les x < 0 puisque le champ est dirigé vers la
droite;
eau bout d’'une demi-période, I'électron est alors extrait par les x > 0 puisque le champ est dirigé vers

la gauche.
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On peut déterminer Xy pour le cas x > 0 : cela correspond au x tel que dﬁ’f’“’t = 0, ce qui conduit a

x? qui n’a de solution que si cos(wgt) < 0, ce qui est bien le cas au bout d'une demi-
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période puisque cos(wgt) = —1. Le raisonnement est identique pour les x < 0.

P - 7
On en déduit donc | % = +, /—4nEOEf .

On veut W), 1ot(Xo) = —W)p, ce qui conduit apres calculs a (on se place pour x > 0 et aux instants tels que

TEQ WO2

el 3x101°V.m~L|: [le gaz est bien ionisé | (cf. valeur de Ep).

cos(wot) =-1): Ef,,- =

Q8- Lélectron n'est soumis quau champ électrique du laser, le PFD s’écrit donc selon 7y :
mi =—eErcos(wp?) | . On en déduit la vitesse et la position compte tenu des conditions initiales

x(t;))=0etv(t;)=0:

ek
i) = —1
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(sin(wq t;) —sin(wg 1))

eE
x(1) = —% [(cos(o 1) — cos(wo 1)) +wo (£ - £7)sinwo 1)}
mwyj
Comme l'ionisation a lieu a un instant #; tel que |cos(wg?;)| = 1, et donc sin(wpt;) = 0, on en déduit
finalement :

. eEf | eEy
x(t) =— sin(wgt) et x(t) = — [(cos(wgt) —1)]
mawy mwy,

REMARQUE
L'énoncé n’est pas trés clair sur le fait que #; correspond a un des instants privilégiés
déterminés a la question précédente.

Pour que xj soit bien négligeable lors de I’étude du mouvement de 1'électron dans le champ laser, le
déplacement de I'électron pendant Ty/2 doit étre trés grande devant xy.

Q9 - D’apres 'expression précédente de la vitesse, on en déduit I'expression de 'énergie cinétique :

1o CE o
We=3mx°= T sin“ (wgo t)
e?E2
En développant et en prenant la moyenne temporelle, on en déduit | (W) = ﬁ
0




La fréquence v du photon émis est donnée par hv = W max + Wp = 2,0 x 10? eV. On en déduit I'étendue
spectale Av = v (cf. énoncé), et donc I'ordre de grandeur de la durée de 'impulsion 6 ¢ par 6¢-Av = 1, ce

qui conduit a | §¢~ 107!7 s |. Cette valeur est cohérente avec la durée des impulsions mentionnée dans

I'introduction du sujet.

Q10- Les phénomenes étudiés sont linéaires !, on peut donc utiliser le principe de superposition :
n'importe quel signal peut alors étre obtenu par superposition de signaux harmoniques (Fourier).

Les signaux ont parcouru une distance x a la vitesse ¢, on ajoute donc le déphasage d a cette propaga-

tion: | s (x, 1) = Spcos[w(r—%)] | et s,(x,t):—Socos[w(t—%—’—cc)

Lamplitude est maximale si les deux signaux sont en phase, donc si les deux cosinus sont en opposition
de phase (du fait du signe moins devant le second) : le décalage temporel % doit étre un multiple demi-

entier de la période T, soit : % = (p + %) T, avec p € N. On en déduit | w=02p+1wy, avec peN|.

REMARQUE
Cela se retrouve aussi par le calcul. Le signal résultant est :
X To x
s(x,) = Spcos [w(t— —)] —Spcos w(t— 20 _ _)
4 2 c
wT xy 0T
= —2sosin(—°)sin wt-=)-=2
4 c 2
. w . X wTy
= =2§psin|(mz— |sin w(t— —) -
2wy c 2

Lamplitude est maximale pour sin (nﬁ) maximal, ce qui redonne le méme résultat. La

premiere méthode est plus rapide et correspond probablement a ce qui était attendu!

Finalement, le spectre ne comporte que les harmoniques impaires w = 2p + 1)wy, et s’étend entre (on
suppose une valeur minimale nulle pour W;) vin = % =~ 9vq (le premier harmonique serait donc le
numéro 9 ou 10) et 1017 Hz (cf. Q9) : le spectre est principalement situé dans le domaine UV et le début
des rayons X, ce qui est cohérent avec I'introduction du sujet.

II. — GENERATION D’HARMONIQUES SUR UN MIROIR PLASMA

B. — Pulsation propre

Q11 - La distribution des ions est fixe et uniforme sur l'intervalle +L/2 et celle des des électrons aussi,
mais décalée de X (¢). Dans les zones ol1 p(x) n’est pas nulle, elle vaut ne en valeur absolue (cf. figure).

o(x)

X (1)

—L/2

électrons

On cherche le champ électrique dans la zone de p = 0. On est en présence de deux nappes planes
d’épaisseur X (¢) et de densité volumique de signes opposés.

Pour commencer, considérons une nappe plane de densité volumique gy entre x = £ X(#)/2. Les inva-
riances montrent que 2 le champ ne dépend que de x et les symétries qu'il est selon % , et que la fonction




E(x) est impaire. On écrit I’équation de Maxwell-Gauss en distinguant trois zones :

A six>X(1)/2
E(z) = §—§x+B sixe[-X/2;X/2]
C six<—-X(1)/2

Comme E(x) estimpaire C = — A et B = 0. Comme le champ est continu pour une répartition volumique,
on en déduit la constante. Ainsi :

Qo X (1)

2%, six>X/2
_ Qo X(1) . i
E(z) = T sixe[-X/2;X/2]
~e20 siz<-X/2

Dans la zone étudiée, le champ créé par la nappe de gauche (g = ne) est donc ”‘;Xm U x, et celui créé

—

”EX —neX(07; . Le champ résultant est donc | E =

neX(t) U

par lanappe de droite (g9 = —ne) est — x |-

REMARQUE
L'énoncé attendait-il une méthode plus rapide utilisant le champ créé par un plan infini,
combiné avec un passage volumique-surfacique (hors programme) ?

ne X(t)

Dans cette zone, le PED appliqué a I'électron s’écrit mi 1, = —eE = U x, ce qui donne I'équa-

. , . . . _ |/ ne*
tion d’'un oscillateur harmonique de pulsation | w, = 4/ meo |-

B. — Propagation dans un plasma homogéne

Q12 - On rappelle les équations de Maxwell dans le cas général, puis avec o = 0 (milieu localement
neutre). On applique le PFD a un électron en négligeant I'action du champ B (électrons non relativistes,
voir Q6), ce qui donne pour le vecteur densité de courant électrique %—][. = ne E on peut I'écrire en

. - . N .
notation complexe j = —l— E yE avec |y=—iy> | la conductivité complexe du plasma, qui est

imaginaire pure.

REMARQUE
L'énoncé demande alors d’établir I'équation de propagation : quel est I'intérét de passer
par la conductivité complexe si c’est pour revenir en réels maintenant ?

Pour établir I'équation d’onde on calcule rotrot E de deux manieres (via le formulaire et via les équa-
tions de Maxwell). On obtient apres calculs :
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On en déduit alors la relation de dispersion en passant en complexes (laplacien remplacé par —k?, dé-
2

s i . 2 w? , Wy . . . )2 £ .
rivée temporelle premiére par iw) : —k® = —% + — qui est bien la relation de I'énoncé. La propagation
megw?

e2

n’est possible que pour w > w, (k réel), ce qui conduita | n < = n. |. Si la propagation est impos-

sible, 'onde est réfléchie.
Q13 - Londe se réfléchit en x, tel que n.(x.) = n.. Comme nyay > 1, d’apreés le document 3, il existe

un x tel que n,(x) = n,. A partir de 'expression de 1, (x) on en déduit | x. =

Q14 - D’apres le document 3 la direction de la réflexion suit les lois de Descartes de 1'optique géo-
metrlque, donc ky se conserve. Comme k* = k% + k3, on en déduit via la relation de dispersion k% =

w (U
—~ — k3. La réflexion a lieu pour k% < 0 ce qui donne w3, > w? - ¢*k%. Comme k), se conserve, on peut

I'écrire ky = ksin = ¢ sin § (on utilise son expression avant le plasma) Ainsi, apres calculs on obtient

nc cos? ﬁ

n < necos? B, ce qui donne I'abscisse demandée : | x, = Lln =X.+2LIn (cos ﬁ) < Xc|.




B. — Excitation d’onde plasma a la surface

x+3L

Q15 - Les électrons passent a 'abscisse x a 'instant | #o(x) = *

La phase en (x,1) est telle que ¢(x,1) = ¢x H(x) + wp(x)(f — fH(x)), ce qui donne

ne(x)e?

=/ maxe® oy (x/21), que
mey meg p » q

$(x, 1) = wp(x) (£ — 23L). On utilise ensuite I'expression de w,, (x) = \/
I'on peut donc écrire w, (x) = wmax €xp(x/2L). Finalement :

/2L (t— x+3L)

¢(x, 1) = Wmax € »

Q16 - Calculons 75,,-7[;6 :

- 0o 1
kp'uxZ—a:—Ewmax

Linstant d’émission en x est tel que k p, - U, =0, cequidonne t = LUSL Comme x € [-3L;0] et v >0, on

en déduit qu’ | il existe un instant ¢ > 0 tel qu’il y ait émission | . En revanche, si le paquet se propageait

selon x < 0, ce qui revient a prendre v <0, il n'y a pas de solution ¢ > 0 et donc I’émission est impossible.

Q017 - Le décalage temporel est (onde plane) | £4Mo — sinf

w c

ysinf
C

ysinf | x+3L
c + v

ATlordonnée y I'instant d’entrée des électrons dans la zone hétérogéne est ; pour atteindre I'abs-

. La phase est

cisse x, il leur faut un temps supplémentaire LVSL On en déduit | f(x,y) =

donc désormais donnée par :

xi2L(, ysinf  x+3L

, 1) = €
&d(x, ¥, 1) = Wmax c »

es P - - 0 . N N
La condition d’émission k - U = —6—‘)/; =0 conduit apres calculs a:

y= (=x+vt—>5L)

vsin

qui est bien, a ¢ fixé, I'équation d’'une droite dont la pente est constante et 'ordonnée a I'origine aug-
mente «a la vitesse v » au cours du temps. L'émission semble s’effectuer le long d'un cone de sommet

M(x,y) et de demi-angle au sommet « tel que tana = &Cnﬁ Cela ressemble a la formation d’un sillage
(plutét type cone de Mach puisque I'angle a dépend de v).

Les paquets d’électrons excitent des oscillations plasma a la fréquence plasma locale wj(x) qui varie de

maniére continue dans la zone hétérogene : | le spectre est continu et w < Wmax |-

III. — INTERACTION D’UNE IMPULSION AVEC UNE FEUILLE MINCE

Q18 - Sila température du plasma est assez élevée I'énergie mécanique des particules sera principale-
ment d’origine cinétique %kBQQ et les interactions directes entre particules négligeables, ce qui permet
d’utiliser le modéle du gaz parfait. ..

Q19 - On écrit la conservation du nombre total de particules (pour une section transverse unité) :
eavant expansion : 1g,max9 ;
eapres expansion : 1y, max0 + fo)oo nr,max €Xp(x/L)dx = np max (0 + 2L).

2 on en dé-

On en déduit | 71, max = no,max(ﬁ . Comme la pulsation plasma est proportionnelle a nt

. 5
duit | @f,max = ®Wo,max\/ 5337 |-

Q20 - D’apres I'énoncé wr,max = 18, 7wg+/ ﬁ. A partir de graphique IV.b, en prenant § = 10 nm (ma-

nifestement L « § vu le spectre a 100 nm), et en supposant Wy max = 13,5, on obtient L = 2 nm.




REMARQUE
On pourrait exploiter 'ensemble des données via une étude graphique, mais ce n'est pas
raisonnable sans calculatrice. ..

On utilise ensuite la relation du document 4 entre L et 8., avec T = 30 fs pour un solide d’apres le docu-

ment 1. On trouve |0, = 106 K (1) |.

Q21 - Lénergie cinétique totale des électrons est (en utilisant Q19) :

3 3
N1 max (0 +2L) EkBHe = ﬂo,max5§ kg0, = cste

Si 6 augmente .

On reprend I'expression de wy, max de Q19, en remplacant L par T

Zkg0 . s D
= - Par ailleurs, d’apres 'expres-

. 2 . 2 . . 2 .
sion L= T,/ %Biee, on en déduit % = 06—2 = %" puisque 08, = cste. Finalement, on en déduit L = Lg/ %
0 &

etdonc:

)
W[, max = W0,max —6
o+ 2Ly \/ FO

La valeur de w;, max augmente moins vite avec 6 que dans le premier modele, et donc... ?
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