
I. — GÉNÉRATION D’HARMONIQUES DANS LES GAZ

A. — Champ laser et champ coulombien

q 1 – La force électrique coulombienne exercée par le proton sur l’électron est
−→
F =− e2

4πε0r 3
−→r . C’est

une force centrale, de centre le proton, qui dérive de Wp telle que
−→
F = −−−−→

gradWp = −dWp

dr
−→u r , ce qui

conduit à Wp =− e2

4πε0r (origine à l’infini).

q 2 – L’énergie mécanique est Wm =Wc +Wp , avec Wc = 1
2 mv2 l’énergie cinétique de l’électron. Le PFD

appliqué à l’électron dans le référentiel du proton, en projection sur −→u r , s’écrit : −m v2

r =−− e2

4πε0r 2 , ce

qui conduit à v = ep
4πε0mr

. On en déduit : Wm =− e2

8πε0r < 0 (état lié).

La quantification proposée pour le moment cinétique (modèle de Bohr) s’écrit mr v = nħ, ce qui donne
via l’expression de v :

r = n2 ε0h2

mπe2︸ ︷︷ ︸
a0

Dans l’état fondamental n = 1 et −W0(eV) =− e
8πε0r =− me3

8(ε0h)2 . On obtient −W0 ≈−10 eV , cohérent

avec la valeur « attendue » de −13,6 eV pour l’atome d’hydrogène.

q 3 – Le champ électrique ressenti par l’électron est celui créé par le proton, ce qui donne

Ec = e
4πε0a2

0
≈ 5×1011 V·m−1 dans l’état fondamental.

D’après le document 1 l’énergie totale de l’impulsion laser WT est délivrée pendant une durée T , ce qui

donne la puissance P = WT
T = 20 GW (valeurs pour un gaz).

•Avant la lentille le faisceau a un diamètre D , donc l’éclairement I (uniforme) est tel que P = πD2

4 I .
D’après l’expression liant I au champ, on en déduit l’amplitude du champ électrique avant la lentille :

Eℓ =
√

2I

ε0c
=

√
8P

ε0cπD2 ≈ 4×108 V ·m−1

•Au foyer le faisceau a un rayon R0 (waist), que l’on obtient via la figure 1.c et la relation fournie tanα=
D
f ′ ≈ λ0

πR0
, soit R0 ≈ λ0 f ′

πD . Ensuite on procède comme précédemment, ce qui donne :

E f =
√

8P

ε0cπR2
0

=
√

8πPD2

ε0cλ2
0 f ′2 ≈ 2×1011 V ·m−1

Ce champ est du même ordre de grandeur que celui ressenti par l’électron : le faisceau va pouvoir
ioniser la matière de la cible, ce qui n’était pas possible avant la focalisation.

A. — Un mécanisme en trois étapes

q 4 – On travaille à l’échelle de l’atome donc |z| ≈ a0, ce qui donne |k0z| ≈ 2πa0
λ0

≈ 4×10−4 ≪ 2π : on

peut donc négliger le terme en k0z.
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q 5 – L’énergie potentielle d’interaction est celle de la question 1 avec r = |x| : Wp = − e2

4πε0|x| ce qui
correspond bien aux courbes de la figure II.a (allure d’hyperboles).

q 6 – La force de Lorentz est
−→
F =−e

(−→
E (z, t )+−→v ∧−→

B (z, t )
)

. Par ailleurs la relation de structure d’une

OPPH se propageant selon z croissant dans le vide est
−→
B = −→u z∧−→E

c .

Cette force dérive d’une énergie potentielle si on peut négliger la contribution magnétique devant la
contribution électrique, ce qui est le cas pour vB

E ≪ 1 ; la relation de structure donne alors (onde trans-

verse donc B = E/c) la condition v ≪ c, c’est-à-dire qu’il faut des électrons non relativistes . Dans ce

cas, la force peut s’écrire
−→
F = −−−−→

gradWp,las avec Wp,las = eE f x cos(ω0t ) (on peut choisir la constante

nulle en x = 0), et donc :

Wp,tot =− e2

4πε0|x|
+eE f x cos(ω0t )

Dans le figure II.b le champ est dirigé dans le sens des x décroissants pour que l’électron aille vers la
droite. La courbe en pointillés correspond manifestement à Wp,las (cosinus négatif ici).

q 7 – Le franchissement de la barrière est facilité quand |cos(ω0t )| = 1, c’est-à-dire quand l’action du
champ électrique de l’onde est la plus importante, donc :
• au début du cycle (t = nT0), l’électron est alors extrait par les x < 0 puisque le champ est dirigé vers la

droite ;
•au bout d’une demi-période, l’électron est alors extrait par les x > 0 puisque le champ est dirigé vers

la gauche.

On peut déterminer x̃0 pour le cas x > 0 : cela correspond au x tel que
dWp,tot

dx = 0, ce qui conduit à
x2 = − e

4πε0E f cos(ω0t ) , qui n’a de solution que si cos(ω0t ) < 0, ce qui est bien le cas au bout d’une demi-

période puisque cos(ω0t ) =−1. Le raisonnement est identique pour les x < 0.

On en déduit donc x̃0 =±
√

e
4πε0E f

.

On veut Wp,tot(x̃0) =−W0, ce qui conduit après calculs à (on se place pour x > 0 et aux instants tels que

cos(ω0t ) =−1) : E f ,i = πε0W 2
0

e3 ≈ 3×1010 V·m−1 : le gaz est bien ionisé (cf. valeur de E f ).

q 8 – L’électron n’est soumis qu’au champ électrique du laser, le PFD s’écrit donc selon −→u x :

mẍ =−eE f cos(ω0t ) . On en déduit la vitesse et la position compte tenu des conditions initiales

x(ti ) = 0 et v(ti ) = 0 :

ẋ(t ) = eE f

mω0
(sin(ω0ti )− sin(ω0t ))

x(t ) = eE f

mω2
0

[(cos(ω0t )−cos(ω0ti ))+ω0(t − ti )sin(ω0ti )]

Comme l’ionisation a lieu à un instant ti tel que |cos(ω0ti )| = 1, et donc sin(ω0ti ) = 0, on en déduit
finalement :

ẋ(t ) =− eE f

mω0
sin(ω0t ) et x(t ) = eE f

mω2
0

[(cos(ω0t )−1)]

REMARQUE

L’énoncé n’est pas très clair sur le fait que ti correspond à un des instants privilégiés
déterminés à la question précédente.

Pour que x0 soit bien négligeable lors de l’étude du mouvement de l’électron dans le champ laser, le
déplacement de l’électron pendant T0/2 doit être très grande devant x0.

q 9 – D’après l’expression précédente de la vitesse, on en déduit l’expression de l’énergie cinétique :

Wc = 1
2 mẋ2 = e2E 2

f

2mω2
0

sin2(ω0t ) .

En développant et en prenant la moyenne temporelle, on en déduit 〈Wc〉 =
e2E 2

f

4mω2
0

.
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La fréquence ν du photon émis est donnée par hν=Wc,max +W0 ≈ 2,0×102 eV. On en déduit l’étendue
spectale ∆ν= ν (cf. énoncé), et donc l’ordre de grandeur de la durée de l’impulsion δt par δt ·∆ν≈ 1, ce

qui conduit à δt ≈ 10−17 s . Cette valeur est cohérente avec la durée des impulsions mentionnée dans
l’introduction du sujet.

q 10 – Les phénomènes étudiés sont linéaires 1, on peut donc utiliser le principe de superposition :
n’importe quel signal peut alors être obtenu par superposition de signaux harmoniques (Fourier).

Les signaux ont parcouru une distance x à la vitesse c, on ajoute donc le déphasage dû à cette propaga-

tion : s+(x, t ) = S0 cos
[
ω

(
t − x

c

)]
et s−(x, t ) =−S0 cos

[
ω

(
t − T0

2 − x
c

)]
.

L’amplitude est maximale si les deux signaux sont en phase, donc si les deux cosinus sont en opposition
de phase (du fait du signe moins devant le second) : le décalage temporel T0

2 doit être un multiple demi-

entier de la période T , soit : T0
2 = (

p + 1
2

)
T , avec p ∈N. On en déduit ω= (2p +1)ω0, avec p ∈N .

REMARQUE

Cela se retrouve aussi par le calcul. Le signal résultant est :

s(x, t ) = S0 cos
[
ω

(
t − x

c

)]
−S0 cos

[
ω

(
t − T0

2
− x

c

)]
= −2S0 sin

(
ωT0

4

)
sin

[
ω

(
t − x

c

)
− ωT0

2

]
= −2S0 sin

(
π

ω

2ω0

)
sin

[
ω

(
t − x

c

)
− ωT0

2

]

L’amplitude est maximale pour sin
(
π ω

2ω0

)
maximal, ce qui redonne le même résultat. La

première méthode est plus rapide et correspond probablement à ce qui était attendu !

Finalement, le spectre ne comporte que les harmoniques impaires ω = (2p +1)ω0, et s’étend entre (on
suppose une valeur minimale nulle pour Wc ) νmin ≈ W0

h ≈ 9ν0 (le premier harmonique serait donc le
numéro 9 ou 10) et 1017 Hz (cf. Q9) : le spectre est principalement situé dans le domaine UV et le début
des rayons X, ce qui est cohérent avec l’introduction du sujet.

II. — GÉNÉRATION D’HARMONIQUES SUR UN MIROIR PLASMA

B. — Pulsation propre

q 11 – La distribution des ions est fixe et uniforme sur l’intervalle ±L/2 et celle des des électrons aussi,
mais décalée de X (t ). Dans les zones où ϱ(x) n’est pas nulle, elle vaut ne en valeur absolue (cf. figure).

x

ϱ(x)

−L/2

L/2

ne

−ne

ions

électrons

X (t )

On cherche le champ électrique dans la zone de ϱ = 0. On est en présence de deux nappes planes
d’épaisseur X (t ) et de densité volumique de signes opposés.

Pour commencer, considérons une nappe plane de densité volumique ϱ0 entre x = ±X (t )/2. Les inva-
riances montrent que 2 le champ ne dépend que de x et les symétries qu’il est selon−→u x et que la fonction
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E(x) est impaire. On écrit l’équation de Maxwell-Gauss en distinguant trois zones :

E(z) =


A si x > X (t )/2
ϱ0
ε0

x +B si x ∈ [−X /2; X /2]
C si x <−X (t )/2

Comme E(x) est impaire C =−A et B = 0. Comme le champ est continu pour une répartition volumique,
on en déduit la constante. Ainsi :

E(z) =


ϱ0 X (t )

2ε0
si x > X /2

ϱ0 X (t )
2ε0

si x ∈ [−X /2; X /2]

−ϱ0 X (t )
2ε0

si z <−X /2

Dans la zone étudiée, le champ créé par la nappe de gauche (ϱ0 = ne) est donc ne X (t )
2ε0

−→u x , et celui créé

par la nappe de droite (ϱ0 =−ne) est −−ne X (t )
2ε0

−→u x . Le champ résultant est donc
−→
E = ne X (t )

ε0

−→u x .

REMARQUE

L’énoncé attendait-il une méthode plus rapide utilisant le champ créé par un plan infini,
combiné avec un passage volumique-surfacique (hors programme) ?

Dans cette zone, le PFD appliqué à l’électron s’écrit mẍ−→u x = −e
−→
E = −ne2 X (t )

ε0

−→u x , ce qui donne l’équa-

tion d’un oscillateur harmonique de pulsation ωp =
√

ne2

mε0
.

B. — Propagation dans un plasma homogène

q 12 – On rappelle les équations de Maxwell dans le cas général, puis avec ϱ = 0 (milieu localement

neutre). On applique le PFD à un électron en négligeant l’action du champ
−→
B (électrons non relativistes,

voir Q6), ce qui donne pour le vecteur densité de courant électrique ∂
−→
j

∂t = ne2

m
−→
E . on peut l’écrire en

notation complexe
−→
j = −i ne2

mω

−→
E = γ

−→
E , avec γ=−i ne2

mω la conductivité complexe du plasma, qui est

imaginaire pure.

REMARQUE

L’énoncé demande alors d’établir l’équation de propagation : quel est l’intérêt de passer
par la conductivité complexe si c’est pour revenir en réels maintenant ?

Pour établir l’équation d’onde on calcule
−→
rot

−→
rot

−→
E de deux manières (via le formulaire et via les équa-

tions de Maxwell). On obtient après calculs :

∆
−→
E = 1

c2

∂2−→E
∂t 2 +

ω2
p

c2

−→
E

On en déduit alors la relation de dispersion en passant en complexes (laplacien remplacé par −k2, dé-

rivée temporelle première par iω) : −k2 =−ω2

c2 + ω2
p

c2 qui est bien la relation de l’énoncé. La propagation

n’est possible que pour ω>ωp (k réel), ce qui conduit à n < mε0ω
2

e2 = nc . Si la propagation est impos-

sible, l’onde est réfléchie.

q 13 – L’onde se réfléchit en xc tel que ne (xc ) = nc . Comme nmax > nc d’après le document 3, il existe

un x tel que ne (x) = nc . À partir de l’expression de ne (x) on en déduit xc = L ln nc
nmax

.

q 14 – D’après le document 3 la direction de la réflexion suit les lois de Descartes de l’optique géo-
métrique, donc ky se conserve. Comme k2 = k2

x + k2
y , on en déduit via la relation de dispersion k2

x =
ω2−ω2

p

c2 −k2
y . La réflexion a lieu pour k2

x < 0 ce qui donne ω2
p >ω2 −c2k2

y . Comme ky se conserve, on peut
l’écrire ky = k sinβ = ω

c sinβ (on utilise son expression avant le plasma). Ainsi, après calculs on obtient

n < nc cos2β, ce qui donne l’abscisse demandée : xr = L ln nc cos2 β
nmax

= xc +2L ln
(
cosβ

)< xc .
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B. — Excitation d’onde plasma à la surface

q 15 – Les électrons passent à l’abscisse x à l’instant t0(x) = x+3L
v .

La phase en (x, t ) est telle que ϕ(x, t ) = ϕ(x, t0(x)) + ωp (x)(t − t0(x)), ce qui donne

ϕ(x, t ) = ωp (x)
(
t − x+3L

v

)
. On utilise ensuite l’expression de ωp (x) =

√
ne (x)e2

mε0
=

√
nmaxe2

mε0
exp(x/2L), que

l’on peut donc écrire ωp (x) =ωmax exp(x/2L). Finalement :

ϕ(x, t ) =ωmax ex/2L
(

t − x +3L

v

)

q 16 – Calculons
−→
k p ·−→u x :

−→
k p ·−→u x =−∂ϕ

∂x
=−1

2
ωmax ex/2L

(
t

L
− x

Lv
− 5

v

)

L’instant d’émission en x est tel que
−→
k p ·−→u x = 0, ce qui donne t = x+5L

v . Comme x ∈ [−3L;0] et v > 0, on

en déduit qu’ il existe un instant t > 0 tel qu’il y ait émission . En revanche, si le paquet se propageait

selon x < 0, ce qui revient à prendre v < 0, il n’y a pas de solution t > 0 et donc l’émission est impossible.

q 17 – Le décalage temporel est (onde plane)
−→
k ·−−−→M M 0

ω = y sinβ
c .

À l’ordonnée y l’instant d’entrée des électrons dans la zone hétérogène est y sinβ
c ; pour atteindre l’abs-

cisse x, il leur faut un temps supplémentaire x+3L
v . On en déduit t0(x, y) = y sinβ

c + x+3L
v . La phase est

donc désormais donnée par :

ϕ(x, y, t ) =ωmax ex/2L
(

t − y sinβ

c
− x +3L

v

)

La condition d’émission
−→
k p ·−→u x =− ∂ϕ

∂x = 0 conduit après calculs à :

y = c

v sinβ
(−x + v t −5L)

qui est bien, à t fixé, l’équation d’une droite dont la pente est constante et l’ordonnée à l’origine aug-
mente « à la vitesse v » au cours du temps. L’émission semble s’effectuer le long d’un cône de sommet

M(x, y) et de demi-angle au sommet α tel que tanα= v sinβ
c . Cela ressemble à la formation d’un sillage

(plutôt type cône de Mach puisque l’angle α dépend de v).

Les paquets d’électrons excitent des oscillations plasma à la fréquence plasma locale ωp (x) qui varie de

manière continue dans la zone hétérogène : le spectre est continu et ω<ωmax .

III. — INTERACTION D’UNE IMPULSION AVEC UNE FEUILLE MINCE

q 18 – Si la température du plasma est assez élevée l’énergie mécanique des particules sera principale-
ment d’origine cinétique 3

2 kBθe et les interactions directes entre particules négligeables, ce qui permet
d’utiliser le modèle du gaz parfait. . .

q 19 – On écrit la conservation du nombre total de particules (pour une section transverse unité) :
•avant expansion : n0,maxδ ;
•après expansion : nL,maxδ+2

∫ 0
−∞ nL,max exp(x/L)dx = nL,max (δ+2L).

On en déduit nL,max = n0,max
δ

δ+2L . Comme la pulsation plasma est proportionnelle à n1/2, on en dé-

duit ωL,max =ω0,max

√
δ

δ+2L .

q 20 – D’après l’énoncé ωL,max ≈ 18,7ω0

√
δ

δ+2L . À partir de graphique IV.b, en prenant δ= 10 nm (ma-
nifestement L ≪ δ vu le spectre à 100 nm), et en supposant ωL,max ≈ 13,5, on obtient L ≈ 2 nm.
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REMARQUE

On pourrait exploiter l’ensemble des données via une étude graphique, mais ce n’est pas
raisonnable sans calculatrice. . .

On utilise ensuite la relation du document 4 entre L et θe , avec T = 30 fs pour un solide d’après le docu-

ment 1. On trouve θe ≈ 106 K (!) .

q 21 – L’énergie cinétique totale des électrons est (en utilisant Q19) :

nL,max (δ+2L)
3

2
kBθe = n0,maxδ

3

2
kBθe = cste

Si δ augmente θe diminue .

On reprend l’expression de ωL,max de Q19, en remplaçant L par T
√

Z kBθe
mi

. Par ailleurs, d’après l’expres-

sion L = T
√

Z kBθe
mi

, on en déduit L2

L2
0
= θe

θe,0
= δ0

δ puisque δθe = cste. Finalement, on en déduit L = L0

√
δ0
δ ,

et donc :

ωL,max =ω0,max

√√√√ δ

δ+2L0

√
δ0
δ

La valeur de ωL,max augmente moins vite avec δ que dans le premier modèle, et donc. . . ?

Corrigé « Laser plasma à haut éclairement » (Mines 1 PC 2018) 6


