
MP2 DS 6 Physique

La durée est de 4 heures.
Les calculatrices sont autorisées.

Problème 1 Réflexion d’une onde électromagnétique

Dans cette partie nous allons nous intéresser à des milieux isolants non chargés, transparents et non absorbants.
On admet que les propriétés de ces milieux sont semblables à celles du vide en remplaçant la permittivité ε0 par
ε0εr où εr désigne la permittivité relative du milieu.

Propagation d’une onde électromagnétique dans un matériau isolant non chargé

1. Écrire les équations de Maxwell dans le milieu considéré en précisant leur nom.
2. Etablir l’équation de propagation du vecteur champ électrique dans le milieu.
3. Exprimer la célérité de propagation de l’onde électromagnétique dans le milieu et montrer que son indice est

alors n = √εr.

On considère une onde plane progressive monochromatique se propageant vers les x croissants de la forme

~E = E0 cos(ωt− kx)~uy
4. Cette onde progressive est-elle polarisée rectilignement ? Si oui, dans quelle direction ?
5.Déterminer l’expression du vecteur d’onde ~k. On montrera en particulier que k = nωc .
6. Déterminer l’expression du champ magnétique associé.

Coefficients de transmission et réflexion en énergie à l’interface entre deux milieux

On s’intéresse à l’interface suivante entre deux milieux d’indices n1 et n2, séparés par le plan x = 0.

On considère une onde électromagnétique incidente :

Les champs électriques sont notés ~Eincident = ~Ei = E0 cos (ωt− kix) ~uy, ~Eréfléchi = ~Er = ρE0 cos (ωt+ krx) ~uy
et ~Etransmis = ~Et = τE0 cos (ωt− ktx) ~uy où ρ et τ désignent respectivement les coefficients de réflexion et de
transmission en amplitude.
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7. Justifier les formes des champs réfléchi et transmis fournis en ce qui concerne le sens de propagation.
8. Quelle relation existe entre ki et kr ainsi qu’entre ki et kt?
9. Déterminer les expressions des champs magnétiques associés ~Bincident , ~Bréfléchi et ~Btransmis , notés respecti-

vement ~Bi, ~Br et ~Bt

Les champs électriques et magnétiques doivent vérifier des relations dites de passage à l’interface entre les deux
milieux. Compte tenu des propriétés des deux milieux, on admet que les champs électrique et magnétique sont
continus à l’interface.

10. Traduire ces deux relations et en déduire que ρ = n1−n2
n1+n2

et τ = 2n1
n1+n2

11. Déterminer les expressions des vecteurs de Poynting pour les ondes incidente, réfléchie et transmise.
12. À l’aide d’un bilan énergétique clairement défini, déterminer les expressions des coefficients de réflexion et

transmission en énergie à l’interface, notés respectivement R et T. L’énergie est-elle conservée ?

Problème 2 Couronne solaire

Lors d’une éclipse solaire on peut observer une couronne en lumière blanche. Près du limbe solaire, cette lumière
provient du rayonnement émis à la surface solaire et diffusé par les électrons libres de la couronne.

Intensité d’une onde plane progressive harmonique

Dans le domaine visible, la couronne est quasiment transparente et la structure d’une onde électromagnétique
qui s’y propage est identique à celle dans le vide. On considère une onde plane progressive harmonique de pulsation
ω et de vecteur d’onde ~k = k~uz. Son champ électrique est noté ~E(M, t), son amplitude E0.

1. Rappeler, sans démonstration, les propriétés du champ électromagnétique de cette onde, ainsi que la relation
de dispersion.

2. Déterminer son vecteur de Poynting en fonction de ε0, c et du champ électrique.
3. En déduire l’intensité I, c’est-à-dire la puissance surfacique moyenne traversant une surface orthogonale à ~uz,

en fonction de ε0, c et E0.

Diffusion par les électrons de la couronne

On considère un électron de masse me et de charge −e placé dans le champ électromagnétique de l’onde.

4. A quelle condition peut-on négliger l’effet du champ magnétique de l’onde ?
5. En considérant la seule force électrique, exprimer ~a (accélération de l’électron) en fonction de ~E et en déduire

< a2 > en fonction de E0.
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On note 〈P 〉 la puissance moyenne rayonnée par l’électron et on définit la section efficace de diffusion par
σ = 〈P 〉/I. On précise qu’un électron non relativiste de charge −e et d’accélération a rayonne une puissance
instantanée P = e2a2

6πε0c3

6. Vérifier que σ a la dimension d’une section (surface). Déterminer son expression et vérifier que sa valeur
numérique est de l’ordre de σ = 6× 10−29SI.

On donne ε0 = 8, 85.10−12SI, c = 3.108m.s−1, e = 1, 61.10−19C et me = 9, 11.10−31kg.

Contenu électronique de la couronne

Une colonne cylindrique d’axe (Oz), de base d’aire S et de hauteur h contient ne(z) électrons libres par unité
de volume. Chaque électron diffuse le rayonnement incident dans toutes les directions. Le rayonnement selon (Oz)
a une intensité I(z).

7. En raisonnant sur une petite tranche d’épaisseur dz comme indiqué sur la figure ci-dessous, montrer que :

dI

dz
= −ne(z)σI

8. Intégrer la relation précédente pour montrer que l’intensité à la sortie de cette colonne en z = h a pour
expression :

I(h) = exp(−Nσ)I(0) avec N =
∫ h

0
ne(z)dz

9. En déduire, dans le cas où Nσ � 1, une expression approchée de la fraction f de la puissance incidente qui
est diffusée par les électrons sur l’ensemble de la colonne.

10. La partie de la couronne solaire observable sur la figure donnée en début de problème, comprise entre la
surface solaire et l’altitude 0, 6Rs par rapport à cette surface, diffuse une fraction f ≈ 10−6 de la puissance rayonnée
par le Soleil dans le domaine visible. Évaluer la densité volumique moyenne n̄e d’électrons libres. On donne le rayon
du soleil : Rs = 7.108m

Propagation dans un plasma

On considère un plasma d’hydrogène totalement ionisé, localement neutre et dont la densité volumique d’élec-
trons est ne. Un électron a une masse me et une charge −e. Dans ce plasma, on étudie une onde électromagnétique
plane harmonique de pulsation ω.

11. Etablir l’expression γ(ω) = nee
2

imeω
de la conductivité complexe du plasma en fonction de la pulsation.

12. Établir la relation de dispersion dans le plasma.
13. A quelle condition une onde plane progressive harmonique peut-elle se propager dans ce milieu ? Quelle est

la nature de l’onde dans le cas contraire ?
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Oscillations plasma

Le milieu n’est plus supposé localement neutre. On néglige le mouvement des protons, de densité volumique n0.
Les électrons, de densité volumique ne(x, t), ont une vitesse ~ve(x, t) = ve(x, t)~ux. Par ailleurs, le champ électrique
a pour expression ~E(x, t) = E(x, t)~ux. On note ρ(x, t) la densité volumique de charge et ~(x, t) le vecteur densité
de courant.

14. Donner l’expression de ρ(x, t) en fonction de ne(x, t), n0 et de la charge élémentaire e.
15. En s’appuyant sur l’équation locale de conservation de la charge, montrer que ∂ne

∂t + ∂(neve)
∂x = 0.

On supposera dans la suite que l’on peut retenir ∂(neve)
∂x ≈ n0

∂ve

∂x , d’où l’équation :

∂ne
∂t

+ n0
∂ve
∂x

= 0 (1)

16. Justifier l’équation

∂E

∂x
= (n0 − ne(x, t)) e

ε0
(2)

17. Écrire l’équation (3) permettant de décrire le mouvement d’un électron sous l’effet du champ électrique. On
admettra que, dans une approximation linéaire, on peut retenir dve

dt ≈
∂ve

∂t .

On cherche des solutions des équations précédentes sous la forme d’ondes planes progressives harmoniques. On
adopte des notations complexes et on pose ne(x, t) = n0 + N exp(i(ωt − kx)), ve(x, t) = V exp(i(ωt − kx)) et
E(x, t) = E0 exp(i(ωt− kx)).

18. Montrer, en utilisant les équations (1), (2) et (3) que la pulsation est nécessairement égale à la pulsation
plasma ωp =

√
n0e2

ε0me
.

19. La relaxation des ondes précédentes s’accompagne d’un rayonnement à la même pulsation. Évaluer la fré-
quence correspondante si les « oscillations plasma » se produisent dans la basse couronne solaire (n0 = 1× 1014 m−3)

20. Ce rayonnement peut-il atteindre l’atmosphère terrestre ? La traverser ? (une réponse justifiée mais brève est
attendue).

Problème 3 Réflexion métallique

On considère une plaque métallique conductrice, de grandes dimensions considérées comme infinies suivant (Ox)
et (Oz), de conductivité γ, occupant tout le demi-espace y < 0 comme le montre la figure ci-dessous.
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On envoie une OPPH (onde plane progressive harmonique) incidente, de polarisation rectiligne, notée
(−→E i,

−→Bi

)
sur cette plaque métallique, le vecteur d’onde de l’onde incidente étant −→k i = −k · −→uy (k > 0). Le champ électrique
associé à l’onde incidente a pour expression −→E i = E0 cos(ωt + ky)−→ux, les propriétés de l’air seront assimilées à celles
du vide.

Données numériques : ε0 = 8, 85.10−12 F ·m−1;µ0 = 4π · 10−7H ·m−1

Réflexion sur un conducteur plan parfait

Dans toute cette partie, la conductivité γ est supposée infinie : le métal est alors considéré comme un conducteur
parfait.

1. Rappeler sans démonstration l’équation de propagation dans le vide, en déduire la relation de dispersion et
la vitesse de phase. Le vide est-il un milieu dispersif ?

2. Déterminer l’expression du champ magnétique incident −→Bi et préciser son amplitude B0.

On cherche une onde réfléchie sous la forme d’une OPPH, de polarisation rectiligne, notée
(−→Er,

−→Br

)
et de vecteur

d’onde −→kr . En surface du métal (y = 0) règnent une densité surfacique de charges σ et un courant surfacique −→js ,
uniformes et non permanents. On rappelle les relations de passage entre deux milieux, ~n12 étant un vecteur unitaire
orthogonal à l’interface dirigé du milieu 1 vers le milieu 2 :

~n12.( ~E2 − ~E1) = σ

ε0

~n12.( ~B2 − ~B1) = 0

~n12 ∧ ( ~E2 − ~E1) = 0

~n12 ∧ ( ~B2 − ~B1) = µ0~js

3. Quelles sont les unités de σ et de js ? Que valent les champs électrique et magnétique dans le métal ?
4. En utilisant une relation de passage, déterminer l’expression du champ ~Er.
5. En déduire le champ ~Br
6. Déterminer le champ électrique total résultant de la superposition de l’onde incidente et de l’onde réfléchie,

comment appelle-t-on cette forme d’oscillation ?
7. Déterminer les expressions de σ et de −→js .
8. Calculer les puissances surfaciques moyennes associées aux ondes incidente et réfléchie. L’énergie incidente

est-elle entièrement réfléchie ?

Réflexion de l’onde avec prise en compte de la conductivité du métal

On prend maintenant en compte la conductivité finie du métal, ce qui permet au champ électromagnétique de
pénétrer dans le métal les champs transmis seront notés

(−→Et,
−→Bt

)
. On admet l’expression du champ transmis :

−→Et =
√

2ωδ
c

E0ey/δ cos
(
ωt + y

δ
+ π

4

)−→ux avec δ =
√

2
µ0γω

On admet que la densité de charge dans le métal est nulle : ρ = 0 et on prendra numériquement γ = 107 S.m−1.
9. Cette expression est valable si ωδ

c << 1. Quelle approximation cela revient-il à faire dans les équations de
Maxwell ?

10. Quelle est la dimension de δ ? Que représente cette grandeur ? Application numérique : calculer δ pour des
fréquences de 1kHz et 1MHz.

11. Donner, en fonction de δ, l’expression du vecteur d’onde complexe
−→
kt .

12. Etablir l’équation de propagation dans le métal, la relation de dispersion et justifier que δ =
√

2
µ0γω

.
13. Déterminer l’expression de la puissance surfacique moyenne associée à l’onde transmise.
14. En déduire le coefficient de transmission en énergie (noté T ) défini comme le rapport des puissances surfa-

ciques moyennes transmise et incidente en y = 0.
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15. Montrer que l’on retrouve ainsi la formule de Hagen-Rubens : T = 4πδ
λ0

où λ0 est la longueur d’onde dans le
vide.

16. Comment peut-on en déduire simplement le coefficient de réflexion en énergie R ? Faire l’application numé-
rique pour T et R aux fréquences 1kHz et 1MHz.
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