Travaux dirigés

Chapitre 1 - Signal sinusoïdal et filtrage

TD I. Régime sinusoïdal forcé et résonance

Exercice I.1. Notation complexe ★

Écrire sous forme complexe les équations différntielles suivantes.

1.

$$\tau \frac{\mathrm{d}u(t)}{\mathrm{d}t} + u(t) = E_0.$$

2.

$$\frac{1}{\omega_0^2}\frac{\mathrm{d}^2 u(t)}{\mathrm{d}t^2} + \frac{2\xi}{\omega_0}\frac{\mathrm{d}u(t)}{\mathrm{d}t} + u(t) = e(t).$$

Exercice I.2. Impédance ★

- 1. Écrire les impédances complexes d'une résistance, d'un condensateur, d'une bobine.
- 2. **Déterminer** l'unité d'une impédance.
- 3. **Déterminer** l'impédance totale de deux impédance \underline{Z}_1 et \underline{Z}_2 en série.
- 4. **Déterminer** l'impédance totale de deux impédance \underline{Z}_1 et \underline{Z}_2 en parallèle.

Exercice I.3. Circuit RLC ★

On étudie un circuit RLC série dans les bornes sont branchés à un générateur de tension idéal délivrant une tension e(t).

- 1. Établir l'impédance du circuit.
- 2. **Établir** $\underline{u}_R(t)$ en fonction de $\underline{e}(t)$.
- 3. Établir l'expression de l'amplitude U_{R0} de $u_R(t)$. Déterminer pour quelle pulsation cette amplitude est maximale.
- 4. **Établir** l'expression du déphasage φ entre $u_R(t)$ et e(t).
- 5. **Établir** $\underline{u}_C(t)$ en fonction de $\underline{e}(t)$.
- 6. Établir l'expression de l'amplitude U_{C0} de $u_C(t)$. Déterminer pour quelle pulsation cette amplitude est maximale et pour quelle condition sur Q le maximum existe.

Exercice I.4. Comportement à hautes à hautes et basses fréquences ★ ★

Les générateurs des circuits ci-dessous délivrent la tension $e(t) = E_0 \cos(\omega t)$.

Déterminer pour les deux circuits la tension u en hautes et basses fréquences.

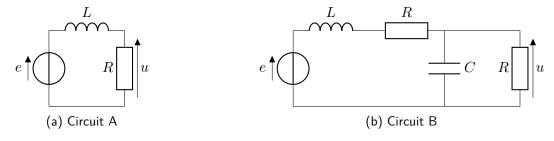


Figure 1.1 – Schémas des circuits électriques

Exercice I.5. Résonance en intensité * *

Un circuit RLC série est alimenté par une source idéal de tension sinusoïdale de tension sinusoïdale, de f.é.m $e(t) = E_0 \cos{(\omega t)}$, avec $E_0 = 2,5$ V.

La figure ci-dessus représente la courbe de résonance en intensité obtenue expérimentalement avec I_0 l'amplitude de l'intensité du courant.

En exploitant cette courbe, **déterminer** les valeurs de la résisantce R, de la capacité C et de l'inductance L utilisées.

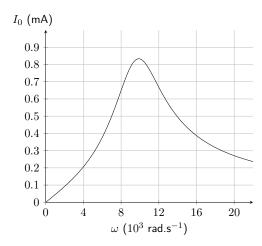


Figure 1.2 – Amplitude de l'intensité I_0 en fonction de la pulsation.

Exercice I.6. Calculs d'impédance *

- 1. **Déterminer** les expressions de R' et L' en fonction de R, L et ω pour que le Dipôle A et le Dipôle B ci-dessous aient la même impédance. **Déterminer** si l'égalité $\frac{L}{R} = \frac{L'}{R'}$ est possible.
- 2. **Exprimer** l'impédance \underline{Z} équivalent au Dipôle C. **Exprimer** \underline{Z} pour ω et $\omega \to \infty$. **Montrer** que \underline{Z} est réel pour une certaine pulsation.

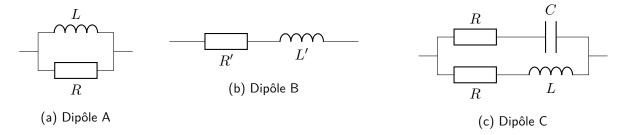


Figure 1.3 – Schémas des dipôles

Exercice I.7. Calculs de déphasage ★ ★

On branche en parallèle entre deux points A et B:

- un générateur de tension imposant la tension $u_{AB}(t) = e(t) = E_0 \cos{(\omega t)}$
- lacktriangle une bobine équivalente à une inductance L et une résistance R en série
- une bobine identique montée en série avec un condensateur de capacité C.
- 1. L'intensité du courant passant de A vers B dans la branche comportant seulement une bobine est $i(t) = I_0 \cos(\omega t + \varphi)$. **Déterminer** I_0 et $\tan \varphi$.
- 2. Même question pour le courant $i(t) = I_0' \cos{(\omega t + \varphi')}$ passant de A vers B dans la branche comportant une bobine et une capacité (on supposera $\frac{1}{C\omega} > L\omega$).

Exercice I.8. Conditions de résonance *

Le circuit ci-dessous est alimeté par une source de tension sinusoïdale de f.é.m $e(t) = E_0 \cos{(\omega t)}$. On s'intéresse à la tension u(t) aux bornes du résistor et de la capacité montés en parlallèle.

On pose
$$\omega_0 = \frac{1}{\sqrt{LC}}$$
, $\xi = \frac{1}{2}R\sqrt{\frac{C}{L}}$ et $x = \frac{\omega}{\omega_0}$.

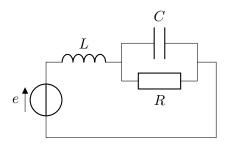


Figure 1.4 – Schéma du circuit électrique

- 1. **Établir** l'expression \underline{u} en fonction de E_0 , jx et ξ .
- 2. **Étudier** l'existence éventuelle d'une résonance pour la tension u(t).

Exercice I.9. Impédance et déphasage ★ ★

Le générateur délivre une tension $e(t) = E_0 \cos(\omega t)$.

Trouver la condition sur R_2 , L, C et ω pour que l'intensité i(t) fournie par le générateur soit en phase avec la tension e(t).

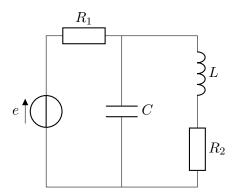


Figure 1.5 – Schéma du circuit électrique

Exercice I.10. Résonance d'un circuit RLC parallèle \star \star

On considère le circuit suivant, où e(t) est une tension sinusoïdale de pulsation ω .

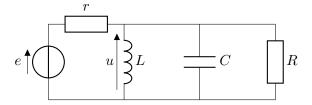


Figure 1.6 – Schéma du circuit électrique

1. **Donner** l'expression de \underline{u} , grandeur complexe associée à la tension u(t).

- 2. **Établir** qu'il y a un phénomène de résonance pour la tension u et **exprimer** la pulsation à laquelle ce phénomène se produit.
- 3. **Décrire** le déphasage entre la tension u et la tension e à la résonance.
- 4. Comparer cette résonance avec la résonance en intensité d'un circuit RLC série.

Exercice I.11. Étude d'une résonance $\star \star \star$

Soit le circuit suivant, où e(t) est une tension sinusoïdale de pulsation ω . On étudie l'intensité parcourant le générateur.

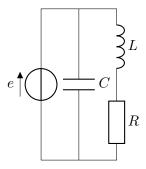


Figure 1.7 – Schéma du circuit électrique

- 1. Exprimer l'impédance complexe du circuit.
- 2. On pose $\omega_0=\frac{1}{\sqrt{LC}}$, $Q=\frac{L\omega_0}{R}$ et $x=\frac{\omega}{\omega_0}$. **Donner** l'expression de l'impédance en fonction de x, Q et R.
- 3. Établir l'existence d'un extremum du module de l'impédance pour certaines valeurs de Q qu'on précisera.
- 4. **Donner** l'expression de la pulsation correspondant à l'extremum.
- 5. En étudiant les limites du module de l'impédance, en déduire qu'il s'agit d'un maximum.
- 6. **Décrire** l'intensité du courant parcourant le générateur.
- 7. Dans le cas où le facteur de qualité Q est grand, **donner** les expressions approchées de la pulsation de résonance en impédance et de la valeur correspondante du maximum de $|\underline{Z}|$.

Exercice I.12. Adaptation d'impédance * * *

Un dipôle électrocinétique linéaire passif est, en régime sinusoïdal permanent, caractérisé par son impédance complexe $\underline{Z}=R+jX$.

Le système étudié (réacteur à plasma) est modélisé par un circuit série R_pC_p . On veut diminer au maximum la partie imaginaire (appelée partie réactive) de cette impédance \underline{Z}_p . Pour cela, on réalise le circuit de la figure ci-contre.

- 1. **Exprimer** l'admittance totale $\underline{Y} = \frac{1}{\underline{Z}}$ de la figure ci-dessus. **Déterminer** l'expression de C qui annule la partie réactive de \underline{Z}_p .
- 2. La condition précédente étant réalisée, **déterminer** l'expression de l'impédance \underline{Z} totale du dipôle, notée alors R_1 .

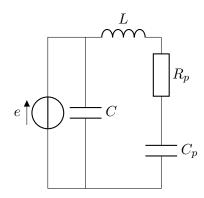


Figure 1.8 – Schéma du circuit électrique

Correction

```
Exercice I.1. Conditions de résonance ★ ★
1.
2.
Exercice I.2. Impédance et déphasage ★ ★
Exercice I.3. Résonance d'un circuit RLC parallèle \star \star
1.
2.
3.
4.
Exercice I.4. Étude d'une résonance ★ ★ ★
1.
2.
3.
4.
5.
6.
7.
Exercice I.5. Adaptation d'impédance \star \star
1.
2.
```