Sujet disponible sur:

Semaine de colle: 6

cahier-de-prepa.fr/mp2i-dalzon/docs?kback

Colles de mathématiques de M Bacquelin

Définition et QC

Définir une racine n-ième et donner ses propriétés classiques et démo : Résolution d'équation du second degré à valeurs complexes.

Exercice 1

- 1. Déterminer le module et un argument de $\frac{1+i\sqrt{3}}{1-i}$ et $\left(\frac{\sqrt{3}+i}{i-1}\right)^{2025}$.
- 2. Déterminer l'ensemble des points M d'affixe z tels que

$$z + \overline{z} = |z|.$$

- 1. Trouver les réels a et b tels que $a^2+b^2=1$ et $(a+ib)^n+(a-ib)^n=1$ avec $n\in\mathbb{N}^*$.
- 2. Donner le lien entre $\tan\left(\frac{\pi}{16}\right)$ et $\tan\left(\frac{\pi}{4}\right)$ et en déduire que $\tan\left(\frac{\pi}{16}\right)$ est racine du polynôme A avec $A: x \mapsto x^4 + 4x^3 6x^2 4x + 1$.
- 3. Diviser l'équation A(x) = 0 d'inconnue $x \in \mathbb{C}^*$ par x^2 et poser $u = x \frac{1}{x}$ dans l'équation obtenue; en déduire la valeur exacte de tan $\left(\frac{\pi}{16}\right)$.

Sujet disponible sur:

Semaine de colle: 6

cahier-de-prepa.fr/mp2i-dalzon/docs?kback

Colles de mathématiques de M Bacquelin

Définition et QC

Définir similitude et donner ses propriétés classiques et démo : Si $\max(A)$ avec A partie non vide de \mathbb{R} existe alors $\sup(A)$... + critère séquentiel de la borne supérieure.

Exercice 1

On pose $z_1 = \frac{\sqrt{6} + i\sqrt{2}}{2}$ et $z_2 = 1 + i$.

- 1. Donner la forme trigonométrique du quotient $\frac{z_1}{z_2}$.
- 2. En déduire les valeurs de $\cos\left(\frac{\pi}{12}\right)$, $\sin\left(\frac{\pi}{12}\right)$ et $\tan\left(\frac{\pi}{12}\right)$, puis de $\cos\left(\frac{7\pi}{12}\right)$, $\sin\left(\frac{7\pi}{12}\right)$ et $\tan\left(\frac{7\pi}{12}\right)$.

- 1. Soient z et z' deux complexes unitaires tel que $zz' \neq -1$. Montrer que $\frac{z+z'}{1+zz'}$ est un réel.
- 2. Calculer $(1+i)^n + (1-i)^n$ et $(1+i)^n (1-i)^n$ avec n un entier.
- 3. On pose : $a = \exp\left(\frac{2i\pi}{5}\right)$, $S = a + a^4$ et $T = a^2 + a^3$. Calculer S + T et $S \times T$, en déduire les valeurs de S et T puis de $\cos\left(\frac{2\pi}{5}\right)$.

Sujet disponible sur:

Semaine de colle: 6

cahier-de-prepa.fr/mp2i-dalzon/docs?kback

Colles de mathématiques de M Bacquelin

Définition et QC

Interprétation géométrique des complexes et démo : Linéarisation et "délinéarisation" sur un cas particulier mais pas trop simple non plus.

Exercice 1

- 1. Écrire sous forme algébrique $(1-i)\overline{(1+i)}$ et $\left(\frac{1+i}{2-i}\right)^2 + \frac{3+6i}{3-4i}$.
- 2. Résoudre dans \mathbb{C} l'équation $2z + i = \overline{z} + 1$.

Exercice 2

On considère les deux équations suivantes :

$$z^5 + 1 = 0 (1)$$

$$z^2 - z - 1 = 0 (2)$$

- 1. Déterminer l'ensemble des solutions de (4). On donnera les solutions sous forme trigonométrique la plus simple possible.
- 2. Déterminer l'ensemble des solutions de (5).
- 3. Déterminer la fonction polynomiale $z \mapsto Q(z)$ telle que :

$$\forall z \in \mathbb{C}, \quad z^5 + 1 = (z+1)Q(z).$$

On note (6) l'équation suivante :

$$Q(z) = 0 (3)$$

- 4. Résoudre dans \mathbb{C} l'équation (6).
- 5. Soit $u \in \mathbb{C}^*$. Montrer que $u + \frac{1}{u}$ est solution de (5) si, et seulement si, u est solution de (6).
- 6. Exprimer sous forme trigonométrique les valeurs prises par $u + \frac{1}{u}$ lorsque u décrit l'ensemble des solutions de (6).
- 7. En déduire une expression de $\cos\left(\frac{\pi}{5}\right)$ avec des radicaux (racines carrées).

Sujet disponible sur:

Semaine de colle: 6

cahier-de-prepa.fr/mp2i-dalzon/docs?kback

Colles de mathématiques de M Bacquelin

Définition et QC

Définir l'argument et donner ses propriétés classiques et démo : Résolution d'équation du second degré à valeurs complexes.

Exercice 1

- 1. Déterminer le module et un argument de $\frac{1+i\sqrt{3}}{1-i}$ et $\left(\frac{\sqrt{3}+i}{i-1}\right)^{2025}$.
- 2. Déterminer l'ensemble des points M d'affixe z tels que

$$z + \overline{z} = |z|.$$

- 1. Trouver les réels a et b tels que $a^2+b^2=1$ et $(a+ib)^n+(a-ib)^n=1$ avec $n\in\mathbb{N}^*$.
- 2. Donner le lien entre $\tan\left(\frac{\pi}{16}\right)$ et $\tan\left(\frac{\pi}{4}\right)$ et en déduire que $\tan\left(\frac{\pi}{16}\right)$ est racine du polynôme A avec $A: x \mapsto x^4 + 4x^3 6x^2 4x + 1$.
- 3. Diviser l'équation A(x) = 0 d'inconnue $x \in \mathbb{C}^*$ par x^2 et poser $u = x \frac{1}{x}$ dans l'équation obtenue; en déduire la valeur exacte de $\tan\left(\frac{\pi}{16}\right)$.

Sujet disponible sur:

Semaine de colle: 6

cahier-de-prepa.fr/mp2i-dalzon/docs?kback

Colles de mathématiques de M Bacquelin

Définition et QC

Interprétation géométrique des complexes et démo : Si $\max(A)$ avec A partie non vide de \mathbb{R} existe alors $\sup(A)$... + critère séquentiel de la borne supérieure.

Exercice 1

On pose $z_1 = \frac{\sqrt{6} + i\sqrt{2}}{2}$ et $z_2 = 1 + i$.

- 1. Donner la forme trigonométrique du quotient $\frac{z_1}{z_2}$.
- 2. En déduire les valeurs de $\cos\left(\frac{\pi}{12}\right)$, $\sin\left(\frac{\pi}{12}\right)$ et $\tan\left(\frac{\pi}{12}\right)$, puis de $\cos\left(\frac{7\pi}{12}\right)$, $\sin\left(\frac{7\pi}{12}\right)$ et $\tan\left(\frac{7\pi}{12}\right)$.

- 1. Soient z et z' deux complexes unitaires tel que $zz' \neq -1$. Montrer que $\frac{z+z'}{1+zz'}$ est un réel.
- 2. Calculer $(1+i)^n + (1-i)^n$ et $(1+i)^n (1-i)^n$ avec n un entier.
- 3. On pose : $a = \exp\left(\frac{2i\pi}{5}\right)$, $S = a + a^4$ et $T = a^2 + a^3$. Calculer S + T et $S \times T$, en déduire les valeurs de S et T puis de $\cos\left(\frac{2\pi}{5}\right)$.

Sujet disponible sur:

Semaine de colle: 6

cahier-de-prepa.fr/mp2i-dalzon/docs?kback

Colles de mathématiques de M Bacquelin

Définition et QC

Expliquer le concept de majorant, maximum, borne supérieure et démo : Linéarisation et "délinéarisation" sur un cas particulier mais pas trop simple non plus.

Exercice 1

- 1. Écrire sous forme algébrique $(1-i)\overline{(1+i)}$ et $\left(\frac{1+i}{2-i}\right)^2 + \frac{3+6i}{3-4i}$.
- 2. Résoudre dans \mathbb{C} l'équation $2z + i = \overline{z} + 1$.

Exercice 2

On considère les deux équations suivantes :

$$z^5 + 1 = 0 (4)$$

$$z^2 - z - 1 = 0 (5)$$

- 1. Déterminer l'ensemble des solutions de (4). On donnera les solutions sous forme trigonométrique la plus simple possible.
- 2. Déterminer l'ensemble des solutions de (5).
- 3. Déterminer la fonction polynomiale $z \mapsto Q(z)$ telle que :

$$\forall z \in \mathbb{C}, \quad z^5 + 1 = (z+1)Q(z).$$

On note (6) l'équation suivante :

$$Q(z) = 0 (6)$$

- 4. Résoudre dans \mathbb{C} l'équation (6).
- 5. Soit $u \in \mathbb{C}^*$. Montrer que $u + \frac{1}{u}$ est solution de (5) si, et seulement si, u est solution de (6).
- 6. Exprimer sous forme trigonométrique les valeurs prises par $u + \frac{1}{u}$ lorsque u décrit l'ensemble des solutions de (6).
- 7. En déduire une expression de $\cos\left(\frac{\pi}{5}\right)$ avec des radicaux (racines carrées).