Sujet disponible sur:

Semaine de colle: 3

cahier-de-prepa.fr/mp2i-dalzon/docs?kback

Colles de mathématiques de M Bacquelin

Définition et QC

Donner les propriétés classiques de ln et démo : Expliciter de deux façons différentes $\arctan(x) + \arctan\left(\frac{1}{x}\right)$ avec $x \in \mathbb{R}^*$.

Exercice 1

Résoudre les équations ou inéquations suivantes d'inconnue x élément de $[-\pi,\pi]$:

- $1. \sin(x) \geqslant \frac{1}{2}.$
- $2. \cos(2x) = \sin(x).$
- 3. $\cos(3x) + \sin(3x) = 1$.

Exercice 2

Soit l'application f définie sur \mathbb{R}_+ par :

$$f: x \mapsto \begin{cases} (x+1) \exp\left(-\frac{1}{x}\right) & \text{si } x > 0\\ 0 & \text{sinon} \end{cases}$$

- 1.(a) Calculer la dérivée de f sur $]0,+\infty[.$
 - (b) Déterminer la limite de $u \mapsto (1+u)e^{-u}$ en $+\infty$. En déduire que f est dérivable en 0.
 - (c) Étudier le sens de variations de f.
 - (d) Déterminer la limite de f en $+\infty$.
- 2. Soit φ l'application définie sur \mathbb{R}_+ par : $\varphi: u \mapsto 1 (1+u)e^{-u}$.
 - (a) Calculer la dérivée de φ .
 - (b) Montrer que, pour tout $u \in \mathbb{R}_+$, $0 \leqslant \varphi'(u) \leqslant u$.
 - (c) En déduire que pour tout $u \in \mathbb{R}_+$, $0 \leqslant \varphi(u) \leqslant \frac{u^2}{2}$.
- 3.(a) En déduire que, pour tout $x \in \mathbb{R}_+^*$, $0 \le x f(x) \le \frac{1}{2x}$.
 - (b) En déduire que C_f admet une droite asymptote Δ en $+\infty$. Préciser la position de C_f par rapport à Δ .

Sujet disponible sur:

Semaine de colle: 3

cahier-de-prepa.fr/mp2i-dalzon/docs?kback

Colles de mathématiques de M Bacquelin

Définition et QC

Définition et tracé de et arcsin et démo : formules avec tan $\left(\frac{\theta}{2}\right)$.

Exercice 1

1. Prouver de deux façons différentes que, pour tout x de [-1,1], on a :

$$\arcsin(x) + \arccos(x) = \frac{\pi}{2}.$$

2. Montrer que $2\arccos\left(\frac{3}{4}\right) = \arccos\left(\frac{1}{8}\right)$.

Exercice 2

Soit n un entier supérieur à 2.

- 1. On pose $C_n = \sum_{k=1}^n k^3$, $D_n = \sum_{k=1}^n (k+1)^3$ et $B_n = \sum_{k=1}^n k^2$. On n'utilisera pas l'explicitation de B_n qui se trouve dans votre cours, le but de cette question est de la retrouver.
 - (a) Exprimer D_n en fonction de C_n .
 - (b) Trouver une relation entre D_n , C_n et B_n basée sur le développement de $(k+1)^3$ et en déduire B_n .
- 2.(a) Pour tout entier k de [2, n], relier $\binom{n}{k}$ et $\binom{n-2}{k-2}$.
 - (b) En déduire $\sum_{k=2}^{n} k(k-1) \binom{n}{k}$ puis $\sum_{k=0}^{n} k^2 \binom{n}{k}$.

Sujet disponible sur:

Semaine de colle: 3

cahier-de-prepa.fr/mp2i-dalzon/docs?kback

Colles de mathématiques de M Bacquelin

Définition et QC

Tracer les fonctions puissances et rappeler la définition de a^b avec $(a,b) \in \mathbb{R}_+^* \times \mathbb{R}_-$ et démo : expliciter $\cos(\arcsin(x))$ puis en déduire la dérivée de arcsin.

Exercice 1

- 1. Soit θ un réel. Exprimer, sous réserve d'existence, $\cos(2\theta)$ et $\sin(2\theta)$ en fonction de $\tan(\theta)$. On démontrera ces formules.
- 2. Résoudre l'équation suivante d'inconnue $t \in \left] -\frac{\pi}{4}, \frac{\pi}{4} \right[: \frac{2\tan(t)}{1+\tan^2(t)} = \frac{1}{2}.$
- 3. En déduire la valeur exacte de tan $\left(\frac{\pi}{12}\right)$.

Exercice 2

- 1. Soit $n \in \mathbb{N}^*$. On pose $S_n = \sum_{0 \le 2k \le n} \binom{n}{2k}$. Expliciter S_n .
- 2. On pose maintenant $S_n = \sum_{i=1}^n \left(\sum_{k=i}^n \frac{i}{k}\right)$ avec $n \in \mathbb{N}^*$. Expliciter S_n .
- 3. Pour tout entier naturel n supérieur à 2, on pose finalement :

$$S_n = (1 \times 2 + 1 \times 3 + \dots + 1 \times n) + (2 \times 3 + \dots + 2 \times n) + \dots + ((n-1) \times n).$$

Montrer que : $2S_n + \sigma_n = \sum_{i=1}^n \left(\sum_{j=1}^n ij\right)$ avec $\sigma_n = 1^2 + 2^2 + \dots + n^2$ et en déduire que :

$$S_n = \frac{n(n+1)(3n^2 - n - 2)}{24}.$$

Sujet disponible sur:

Semaine de colle: 3

cahier-de-prepa.fr/mp2i-dalzon/docs?kback

Colles de mathématiques de M Bacquelin

Définition et QC

Expliquer les échanges de sommes et démo : expliciter $\cos(\arcsin(x))$ puis en déduire la dérivée de arcsin.

Exercice 1

Résoudre les équations ou inéquations suivantes d'inconnue x élément de $[-\pi,\pi]$:

- $1. \sin(x) \geqslant \frac{1}{2}.$
- $2. \cos(2x) = \sin(x).$
- 3. $\cos(3x) + \sin(3x) = 1$.

Exercice 2

Soit l'application f définie sur \mathbb{R}_+ par :

$$f: x \mapsto \begin{cases} (x+1) \exp\left(-\frac{1}{x}\right) & \text{si } x > 0\\ 0 & \text{sinon} \end{cases}$$

- 1.(a) Calculer la dérivée de f sur $]0, +\infty[$.
 - (b) Déterminer la limite de $u\mapsto (1+u)e^{-u}$ en $+\infty$. En déduire que f est dérivable en 0.
 - (c) Étudier le sens de variations de f.
 - (d) Déterminer la limite de f en $+\infty$.
- 2. Soit φ l'application définie sur \mathbb{R}_+ par : $\varphi : u \mapsto 1 (1+u)e^{-u}$.
 - (a) Calculer la dérivée de φ .
 - (b) Montrer que, pour tout $u \in \mathbb{R}_+$, $0 \leqslant \varphi'(u) \leqslant u$.
 - (c) En déduire que pour tout $u \in \mathbb{R}_+$, $0 \leqslant \varphi(u) \leqslant \frac{u^2}{2}$.
- 3.(a) En déduire que, pour tout $x \in \mathbb{R}_+^*$, $0 \leqslant x f(x) \leqslant \frac{1}{2x}$.
 - (b) En déduire que C_f admet une droite asymptote Δ en $+\infty$. Préciser la position de C_f par rapport à Δ .

Sujet disponible sur:

Semaine de colle: 3

cahier-de-prepa.fr/mp2i-dalzon/docs?kback

Colles de mathématiques de M Bacquelin

Définition et QC

Tracer les fonctions puissances et rappeler ce qu'on peut faire et ce qu'on ne peut pas faire avec les puissances et démo : formules avec tan $\left(\frac{\theta}{2}\right)$.

Exercice 1

1. Prouver de deux façons différentes que, pour tout x de [-1,1], on a :

$$\arcsin(x) + \arccos(x) = \frac{\pi}{2}.$$

2. Montrer que $2\arccos\left(\frac{3}{4}\right) = \arccos\left(\frac{1}{8}\right)$.

Exercice 2

Soit n un entier supérieur à 2.

- 1. On pose $C_n = \sum_{k=1}^n k^3$, $D_n = \sum_{k=1}^n (k+1)^3$ et $B_n = \sum_{k=1}^n k^2$. On n'utilisera pas l'explicitation de B_n qui se trouve dans votre cours, le but de cette question est de la retrouver.
 - (a) Exprimer D_n en fonction de C_n .
 - (b) Trouver une relation entre D_n , C_n et B_n basée sur le développement de $(k+1)^3$ et en déduire B_n .
- 2.(a) Pour tout entier k de [2, n], relier $\binom{n}{k}$ et $\binom{n-2}{k-2}$.
 - (b) En déduire $\sum_{k=2}^{n} k(k-1) \binom{n}{k}$ puis $\sum_{k=0}^{n} k^2 \binom{n}{k}$.

Sujet disponible sur:

Semaine de colle: 3

cahier-de-prepa.fr/mp2i-dalzon/docs?kback

Colles de mathématiques de M Bacquelin

Définition et QC

Donner les formules des sommes géométriques et de $\sum_{k=0}^n k$ et $\sum_{k=0}^n k^2$ et démo : Expliciter de deux façons différentes $\arctan(x) + \arctan\left(\frac{1}{x}\right)$ avec $x \in \mathbb{R}^*$.

Exercice 1

- 1. Soit θ un réel. Exprimer, sous réserve d'existence, $\cos(2\theta)$ et $\sin(2\theta)$ en fonction de $\tan(\theta)$. On démontrera ces formules.
- 2. Résoudre l'équation suivante d'inconnue $t \in \left] -\frac{\pi}{4}, \frac{\pi}{4} \right[: \frac{2\tan(t)}{1+\tan^2(t)} = \frac{1}{2}.$
- 3. En déduire la valeur exacte de tan $\left(\frac{\pi}{12}\right)$.

Exercice 2

- 1. Soit $n \in \mathbb{N}^*$. On pose $S_n = \sum_{0 \le 2k \le n} \binom{n}{2k}$. Expliciter S_n .
- 2. On pose maintenant $S_n = \sum_{i=1}^n \left(\sum_{k=i}^n \frac{i}{k}\right)$ avec $n \in \mathbb{N}^*$. Expliciter S_n .
- 3. Pour tout entier naturel n supérieur à 2, on pose finalement :

$$S_n = (1 \times 2 + 1 \times 3 + \dots + 1 \times n) + (2 \times 3 + \dots + 2 \times n) + \dots + ((n-1) \times n).$$

Montrer que : $2S_n + \sigma_n = \sum_{i=1}^n \left(\sum_{j=1}^n ij\right)$ avec $\sigma_n = 1^2 + 2^2 + \dots + n^2$ et en déduire que :

$$S_n = \frac{n(n+1)(3n^2 - n - 2)}{24}.$$