# EXERCICE 25 analyse

## Énoncé exercice 25

- 1. Démontrer que, pour tout entier naturel n, la fonction  $t \mapsto \frac{1}{1+t^2+t^ne^{-t}}$  est intégrable sur  $[0,+\infty[$ .
- 2. Pour tout  $n \in \mathbb{N}$ , on pose  $u_n = \int_0^{+\infty} \frac{\mathrm{d}t}{1 + t^2 + t^n e^{-t}}$ . Calculer  $\lim_{n \to +\infty} u_n$ .

### Corrigé exercice 25

1.  $f_n: t \mapsto \frac{1}{1+t^2+t^n\mathrm{e}^{-t}}$  est définie et continue par morceaux sur  $[0,+\infty[$ .

De plus,  $\forall t \in [0, +\infty[, |f_n(t)| \leq \frac{1}{1+t^2} = \varphi(t).$ 

Or  $\varphi(t) \underset{+\infty}{\sim} \frac{1}{t^2}$  et  $t \longmapsto \frac{1}{t^2}$  est intégrable sur  $[1, +\infty[$ , donc  $\varphi$  est intégrable sur  $[1, +\infty[$ . Donc, par critère de majoration pour les fonctions positives,  $f_n$  est intégrable sur  $[1, +\infty[$ .

Or  $f_n$  est continue sur [0,1] donc  $f_n$  est intégrable sur  $[0,+\infty[$ .

2. i) La suite de fonctions  $(f_n)$  converge simplement sur  $[0, +\infty[$  vers la fonction f définie par :

$$f(t) = \begin{cases} \frac{1}{1+t^2} & \text{si } t \in [0,1[\\ \frac{1}{2+e^{-1}} & \text{si } t = 1\\ 0 & \text{si } t \in ]1, +\infty[ \end{cases}$$

- ii) Les fonctions  $f_n$  et f sont continues par morceaux sur  $[0, +\infty[$ .
- iii)  $\forall t \in [0, +\infty[, |f_n(t)| \leq \varphi(t) \text{ avec } \varphi \text{ intégrable sur } [0, +\infty[.$

Alors, d'après le théorème de convergence dominée,  $\lim_{n\to+\infty}u_n=\lim_{n\to+\infty}\int_0^{+\infty}f_n(t)\,\mathrm{d}t=\int_0^{+\infty}f(t)\,\mathrm{d}t.$ 

Or 
$$\int_0^{+\infty} f(t) dt = \int_0^1 \frac{dt}{1+t^2} = \frac{\pi}{4}$$
.

Donc,  $\lim_{n \to +\infty} u_n = \frac{\pi}{4}$ .

## EXERCICE 29 analyse

#### Enoncé exercice 29

On pose:  $\forall x \in ]0, +\infty[, \forall t \in ]0, +\infty[, f(x,t) = e^{-t}t^{x-1}]$ .

1. Démontrer que :  $\forall x \in ]0, +\infty[$ , la fonction  $t \mapsto f(x,t)$  est intégrable sur  $]0, +\infty[$ .

On pose alors :  $\forall x \in ]0, +\infty[$ ,  $\Gamma(x) = \int_{0}^{+\infty} e^{-t} t^{x-1} dt$ .

- 2. Pour tout  $x \in ]0, +\infty[$ , exprimer  $\Gamma(x+1)$  en fonction de  $\Gamma(x)$ .
- 3. Démontrer que  $\Gamma$  est de classe  $C^1$  sur  $]0,+\infty[$  et exprimer  $\Gamma'(x)$  sous forme d'intégrale.

#### Corrigé exercice 29

1. Soit  $x \in ]0, +\infty[$ .

La fonction  $t \mapsto e^{-t}t^{x-1}$  est définie, positive et continue par morceaux sur  $]0, +\infty[$ .

 $f(x,t) \underset{t \to 0^+}{\sim} t^{x-1} \text{ et } t \longmapsto t^{x-1} = \frac{1}{t^{1-x}} \text{ est intégrable sur } ]0,1] \text{ (fonction de Riemann avec } 1-x < 1).$ 

Donc, par critère d'équivalence,  $t \longmapsto f(x,t)$  est intégrable sur ]0,1] . (\*)

De plus,  $\lim_{t\to+\infty}t^2f(x,t)=0$ , donc, pour t au voisinage de  $+\infty$ ,  $f(x,t)=o(\frac{1}{\epsilon^2})$ .

Or  $t \mapsto \frac{1}{t^2}$  est intégrable sur  $[1, +\infty[$  (fonction de Riemann intégrable).

Donc  $t \mapsto f(x,t)$  est intégrable sur  $[1,+\infty[$ . (\*\*)

Donc, d'après (\*) et (\*\*),  $t \mapsto f(x,t)$  est intégrable sur  $]0,+\infty[$ .

2. Par intégration par parties, justifiée ci-après  $\int_0^{+\infty} e^{-t}t^x dt = \left[-e^{-t}t^x\right]_0^{+\infty} + x \int_0^{+\infty} e^{-t}t^{x-1} dt.$ 

Le terme de variation possède des limites finies à ses bornes par croissances comparées, et est de valeur nulle, ce qui valide ce calcul et donne

 $\Gamma(x+1) = x\Gamma(x)$ .

- 3. i) pour tout x > 0,  $t \mapsto f(x,t)$  est continue par morceaux et intégrable sur  $]0, +\infty[$  (d'après la question 1.).
  - ii)  $\forall t \in ]0, +\infty[$ , la fonction  $x \mapsto f(x,t)$  est dérivable et  $\forall (x,t) \in ]0, +\infty[^2, \frac{\partial f}{\partial x}(x,t) = (\ln t)e^{-t}t^{x-1}]$ .
  - iii) Pour tout x > 0,  $t \mapsto \frac{\partial f}{\partial x}(x,t)$  est continue par morceaux sur  $]0, +\infty[$ .

iv) Pour tout 
$$t > 0$$
,  $x \mapsto \frac{\partial f}{\partial x}(x,t)$  est continue sur  $]0, +\infty[$ .  
v) Pour tout  $[a,b] \subset ]0, +\infty[$  et  $\forall (t,x) \in ]0, +\infty[ \times [a,b] :$ 

$$\left|\frac{\partial f}{\partial x}(x,t)\right| \leqslant \varphi(t) \text{ avec } \varphi(t) = \left\{ \begin{array}{ll} |\ln t| \mathrm{e}^{-t} t^{a-1} & \mathrm{si} & t \in ]0,1[\\ |\ln t| \mathrm{e}^{-t} t^{b-1} & \mathrm{si} & t \in [1,+\infty[ ]] \end{array} \right.$$

avec  $\varphi$  continue par morceaux et intégrable sur  $]0, +\infty[$ 

$$\varphi(t) \underset{0^{+}}{\sim} |\ln t| t^{a-1} = \varphi_{1}(t) \text{ et } \lim_{t \to 0^{+}} t^{1-\frac{a}{2}} \varphi_{1}(t) = \lim_{t \to 0} t^{\frac{a}{2}} |\ln t| = 0.$$

Donc, au voisinage de  $0^+$ ,  $\varphi_1(t) = o\left(\frac{1}{\frac{a}{t^1 - \frac{a}{2}}}\right)$ .

Or  $t \mapsto \frac{1}{t^{1-\frac{a}{2}}}$  est intégrable sur ]0,1[(fonction de Riemann avec  $1-\frac{a}{2}<1).$ 

Donc,  $\varphi_1$  est intégrable sur ]0,1[.

Donc, par critère d'équivalence pour les fonctions positives,  $\varphi$  est intégrable sur ]0,1[.

 $\lim_{t \to +\infty} t^2 \varphi(t) = 0.$ 

Donc, pour t au voisinage de  $+\infty$ ,  $\varphi(t) = o(\frac{1}{t^2})$ .

Or,  $t\longmapsto \frac{1}{t^2}$  est intégrable sur  $[1,+\infty[$  (fonction de Riemann intégrable). Donc  $\varphi$  est intégrable sur  $[1,+\infty[$ . (\*\*)

D'après (\*) et (\*\*),  $\varphi$  est intégrable sur  $]0, +\infty[$ .

D'où, d'après le théorème de dérivation des intégrales à paramètres, 
$$\Gamma$$
 est de classe  $\mathcal{C}^1$  sur  $]0,+\infty[$ . De plus,  $\forall\,x\in]0,+\infty[$ ,  $\Gamma'(x)=\int_0^{+\infty}{(\ln t)\mathrm{e}^{-t}t^{x-1}\,\mathrm{d}t}.$ 

## EXERCICE 30 analyse

#### Énoncé exercice 30

- 1. Énoncer le théorème de dérivation sous le signe intégrale.
- 2. Démontrer que la fonction  $f: x \longmapsto \int_0^{+\infty} e^{-t^2} \cos(xt) dt$  est de classe  $C^1$  sur  $\mathbb{R}$ .
- 3. (a) Trouver une équation différentielle linéaire (E) d'ordre 1 dont f est solution.
  - (b) Résoudre (E).

#### Corrigé exercice 30

1. Soit  $u:(x,t)\mapsto u(x,t)$  une fonction définie de  $X\times I$  vers  $\mathbb{C}$ , avec X et I intervalles contenant au moins deux points de  $\mathbb{R}$ .

On suppose que :

i)  $\forall x \in X, t \longmapsto u(x,t)$  est continue par morceaux et intégrable sur I.

On pose alors  $\forall x \in X$ ,  $f(x) = \int_I u(x, t) dt$ .

- ii) u admet une dérivée partielle  $\frac{\partial u}{\partial x}$  sur  $X \times I$  vérifiant :
- $\forall x \in X, t \mapsto \frac{\partial u}{\partial x}(x, t)$  est continue par morceaux sur I.
- $-\forall t \in I, x \mapsto \frac{\partial x}{\partial x}(x, t) \text{ est continue sur } X.$
- iii) il existe  $\varphi: I \to \mathbb{R}^+$  continue par morceaux, positive et intégrable sur I vérifiant :

 $\forall (x,t) \in X \times I, \left| \frac{\partial u}{\partial x}(x,t) \right| \leqslant \varphi(t).$ 

Alors la fonction f est de classe  $\mathcal{C}^1$  sur X et  $\forall x \in X, f'(x) = \int_I \frac{\partial u}{\partial x}(x,t) \, \mathrm{d}t.$ 

- 2. On pose  $\forall (x,t) \in \mathbb{R} \times [0,+\infty[, u(x,t) = e^{-t^2}\cos(xt).$ 
  - i)  $\forall x \in \mathbb{R}, t \longmapsto u(x,t)$  est continue sur  $[0,+\infty[$ .

De plus,  $\forall x \in \mathbb{R}, |u(x,t)| \leq e^{-t^2}$ .

Or  $\lim_{t\to+\infty} t^2 e^{-t^2} = 0$ , donc, au voisinage de  $+\infty$ ,  $e^{-t^2} = o\left(\frac{1}{t^2}\right)$ .

Donc,  $t \longmapsto u(x,t)$  est intégrable sur  $[0,+\infty[$ .

- ii)  $\forall (x,t) \in \mathbb{R} \times [0,+\infty[,\frac{\partial u}{\partial x}(x,t) = -te^{-t^2}\sin(xt).$
- $\forall x \in \mathbb{R}, t \mapsto \frac{\partial u}{\partial x}(x,t)$  est continue par morceaux sur  $[0,+\infty[$ .
- $\forall t \in [0, +\infty], x \mapsto \frac{\partial u}{\partial x}(x, t)$  est continue sur  $\mathbb R$ .
- -iii)  $\forall (x,t) \in \mathbb{R} \times [0,+\infty[,\left|\frac{\partial u}{\partial x}(x,t)\right|] \leqslant t e^{-t^2} = \varphi(t)$  avec  $\varphi$  continue par morceaux, positive et intégrable sur  $[0,+\infty[$ .

En effet,  $\lim_{t \to +\infty} t^2 \varphi(t) = 0$  donc, au voisinage de  $+\infty$ ,  $\varphi(t) = o(\frac{1}{t^2})$ .

On en déduit que  $\varphi$  est intégrable sur  $[1, +\infty[$  et comme elle est continue sur [0, 1[, alors  $\varphi$  est bien intégrable sur  $[0, +\infty[$ .

Donc f est de classe  $\mathcal{C}^1$  sur  $\mathbb{R}$  et :

$$\forall x \in \mathbb{R}, f'(x) = \int_0^{+\infty} -t e^{-t^2} \sin(xt) dt$$

3. (a) On a,  $\forall x \in \mathbb{R}$ ,  $f'(x) = \int_0^{+\infty} -t e^{-t^2} \sin(xt) dt$ .

Procédons à une intégration par parties, justifiée par l'existence immédiate de limites finies aux bornes du terme de variation.

$$\int_0^{+\infty} -t e^{-t^2} \sin(xt) dt = \left[ \frac{1}{2} e^{-t^2} \sin(xt) \right]_0^{+\infty} - \int_0^{+\infty} \frac{x}{2} e^{-t^2} \cos(xt) dt$$

ce qui donne 
$$f'(x) + \frac{x}{2}f(x) = 0$$
.

ce qui donne 
$$f'(x) + \frac{x}{2}f(x) = 0$$
.  
Donc  $f$  est solution de l'équation différentielle  $(E): y' + \frac{x}{2}y = 0$ .

(b) Les solutions de 
$$(E)$$
 sont les fonctions  $y$  définies par  $y(x)=A\mathrm{e}^{-\dfrac{x^2}{4}}$ , avec  $A\in\mathbb{R}$ .

Soit  $n \in \mathbb{N}^*$ .

La fonction  $x \mapsto e^{-x^n}$  est définie et continue par morceaux sur  $[1, +\infty[$ . Etant de plus négligeable devant  $1/x^2$  quand  $x \to +\infty$ , on peut affirmer qu'elle est intégrable et on peut donc introduire

$$\int_{1}^{+\infty} e^{-x^{n}} dx$$

Par le changement de variable  $C^1$  strictement monotone donné par la relation  $t=x^n$  , on obtient

$$n \int_{1}^{+\infty} e^{-x^{n}} dx = \int_{1}^{+\infty} \frac{e^{-t}}{t} t^{1/n} dt$$

Posons alors

$$f_n: t \mapsto \frac{\mathrm{e}^{-t}}{t} t^{1/n}$$

Les fonctions  $f_n$  sont définies et continues par morceaux sur  $[1, +\infty[$ . La suite de fonctions  $(f_n)$  converge simplement vers la fonction

$$f: t \mapsto \frac{e^{-t}}{t}$$

et pour tout  $n \in \mathbb{N}$ 

$$|f_n(t)| \leq e^{-t} = \varphi(t)$$

avec  $\varphi$  fonction continue par morceaux et intégrable puisque  $t^2\varphi(t) \xrightarrow[t \to +\infty]{} 0$ . On peut alors appliquer le théorème de convergence dominée et affirmer

$$n\int_{1}^{+\infty} e^{-x^{n}} dx = \int_{1}^{+\infty} \frac{e^{-t}}{t} t^{1/n} dt \xrightarrow[n \to +\infty]{} \int_{1}^{+\infty} \frac{e^{-t}}{t} dt$$

 $f_n$  est définie et continue par morceaux sur  $]0, +\infty[$ .

Quand  $x \to 0^+$ ,  $f_n(x) \to \frac{1}{n}$ , on peut donc la prolonger par continuité.

Quand  $x \to +\infty$ ,  $f_n(x) = o\left(\frac{1}{x^2}\right)$ .

Par suite  $f_n$  est intégrable sur  $]0, +\infty[$ .

$$u_n = \int_0^{+\infty} \frac{n \ln(1 + x/n)}{x(1 + x^2)} dx$$

Posons

$$g_n(x) = \frac{n \ln(1 + x/n)}{x(1 + x^2)} = n f_n(x)$$

Pour x > 0, quand  $n \to +\infty$ ,  $g_n(x) \to \frac{1}{1+x^2}$ .

De plus, sachant  $\ln(1+u) \leq u$ , on a  $|g_n(x)| \leq \frac{1}{1+x^2} = \varphi(x)$  avec  $\varphi$  intégrable. Par convergence dominée,

$$u_n \to \int_0^{+\infty} \frac{\mathrm{d}x}{1+x^2} = \frac{\pi}{2}$$

### Exercice 10 : [énoncé]

Par changement de variable

$$\mu_n = \int_0^1 f(ns) \, ds$$

Par convergence dominée

$$\mu_n \to \ell$$

Pour t > 0, on peut écrire

$$\frac{\sin t}{e^t - 1} = \sum_{n=1}^{+\infty} \sin t \cdot e^{-nt}$$

La fonction  $t \mapsto \sin t \cdot e^{-nt}$  est intégrable sur  $]0, +\infty[$  et

$$\int_{0}^{+\infty} |\sin t| \, e^{-nt} \, dt \leqslant \int_{0}^{+\infty} t e^{-nt} \, dt = \frac{1}{n^2}$$

est le terme général d'une série convergente donc par le théorème de Fubini d'intégration terme à terme  $t\mapsto \frac{\sin t}{\mathrm{e}^t-1}$  est intégrable sur  $]0,+\infty[$  et

$$\int_0^{+\infty} \frac{\sin t}{e^t - 1} dt = \sum_{n=1}^{+\infty} \int_0^{+\infty} \sin t \cdot e^{-nt} dt$$

avec

$$\int_0^{+\infty} \frac{dt}{e^t - 1} dt = \sum_{n=1}^{+\infty} \int_0^{+\infty} \sinh t \cdot e^{-t} dt$$

$$\int_0^{+\infty} \sin t \cdot e^{-nt} dt = \operatorname{Im} \int_0^{+\infty} e^{(-n+i)t} dt = \frac{1}{n^2 + 1}$$

Finalement

$$\int_0^{+\infty} \frac{\sin t}{e^t - 1} dt = \sum_{n=1}^{+\infty} \frac{1}{n^2 + 1}$$

Exercice 33 : [énoncé]

Les intégrales considérées sont bien définies.

Par intégration par parties,

$$I_n(m) = \left[\frac{x^{n+1}}{n+1}(\ln x)^m\right]^1 - \frac{m}{n+1}I_n(m-1)$$

Ainsi

$$I_n(m) = \frac{(-1)^m}{(n+1)^{m+1}} m!$$

En particulier

$$I_n(n) = \frac{(-1)^n}{(n+1)^{n+1}} n!$$

b)  $x^{-x} = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!} (x \ln x)^n$ .

Par convergence de la série des intégrales des valeurs absolues,

$$\int_{0}^{1} x^{-x} dx = \sum_{n=0}^{+\infty} \frac{(-1)^{n}}{n!} I_{n}(n) = \sum_{n=0}^{+\infty} \frac{1}{(n+1)^{n+1}}$$

a) 
$$t \mapsto \frac{1}{1+t^3}$$
 est intégrable sur  $\mathbb{R}^+$  donc  $g(0)$  existe.  
 $u \mapsto 1/u$  est une bijection  $\mathcal{C}^1$  entre  $\mathbb{R}^{+\star}$  et  $\mathbb{R}^{+\star}$ .  
On peut réaliser le changement de variable  $t = 1/u$  qui donne

$$\int_0^{+\infty} \frac{dt}{1+t^3} = \int_0^{+\infty} \frac{u \, du}{1+u^3}$$

puis

Donc
$$2a(0) = \int_{-\infty}^{+\infty} \frac{dt}{dt} = \left[ \frac{2}{2} \arctan \frac{2t - t}{2} \right]$$

$$2g(0) = \int_0^{+\infty} \frac{\mathrm{d}t}{t^2 - t + 1} = \left[ \frac{2}{\sqrt{3}} \arctan \frac{2t - 1}{\sqrt{3}} \right]_0^{+\infty} = \frac{4\pi}{3\sqrt{3}}$$

$$J_0 = t^2 - t + 1 = \left[\sqrt{3}\right]^{2\pi}$$
 ouis

$$2g(0) = \int_0^{\infty} \frac{dt}{t^2 - t + 1} = \left[\frac{2}{\sqrt{3}} \arctan \frac{2t}{\sqrt{3}}\right]$$

 $g(0) = \frac{2\pi}{2\sqrt{2}}$ 

b) La fonction 
$$g$$
 donc  $g$  est décrois

donc  $\lim_{x \to +\infty} g(x) = 0$ .

b) La fonction 
$$g$$
 est paire. Pour  $0 \le x \le x'$ , on a pour tout  $t \ge 0$ ,  $e^{-tx^2} \ge e^{-tx'^2}$  donc  $g$  est décroissante sur  $\mathbb{R}^+$ .

 $0 \leqslant g(x) \leqslant \int_{0}^{+\infty} e^{-tx^2} dt = \frac{1}{x^2} \to 0$ 

décroissante sur 
$$0$$
,

donc 
$$g$$
 est déci  
c) Pour  $x > 0$ ,