MP Sujet 1

Corrigé dès mercredi sur:

Semaine de colle: 6 https://cahier-de-prepa.fr/mp2i-dalzon/docs?kback Colles de Mathématiques de M Bacquelin

Question de cours

Énoncer correctement le théorème de convergence dominée puis celui de continuité des intégrales à paramètres.

Exercice 1

Banque CCINP : On pose : $\forall x \in]0, +\infty[, \forall t \in]0, +\infty[, f(x,t) = e^{-t}t^{x-1}$.

1. Démontrer que : $\forall x \in]0, +\infty[$, la fonction $t \mapsto f(x,t)$ est intégrable sur $]0, +\infty[$. On pose alors :

$$\forall x \in]0, +\infty[, \Gamma(x) = \int_0^{+\infty} e^{-t} t^{x-1} dt.$$

- 2. Pour tout $x \in]0, +\infty[$, exprimer $\Gamma(x+1)$ en fonction de $\Gamma(x)$.
- 3. Démontrer que Γ est de classe C^1 sur $]0; +\infty[$ et exprimer $\Gamma'(x)$ sous forme d'intégrale.

Exercice 2

Les deux questions sont indépendantes.

1. Montrer que :

$$\lim_{n \to +\infty} \left(n \int_{1}^{+\infty} \exp(-x^{n}) dx \right) = \int_{1}^{+\infty} \frac{\exp(-x)}{x} dx.$$

2. Démontrer que $\int_0^{+\infty} \frac{\sin(t)}{e^t - 1} dt = \sum_{n=1}^{+\infty} \frac{1}{n^2 + 1}.$

MP Sujet 2

Corrigé dès mercredi sur:

Semaine de colle: 6 https://cahier-de-prepa.fr/mp2i-dalzon/docs?kback Colles de Mathématiques de M Bacquelin

Question de cours

Énoncer correctement le théorème d'intégration terme à terme (cas positif puis général)

Exercice 1

Banque CCINP:

- $1.\,$ Énoncer le théorème de dérivation sous le signe intégrale.
- 2. Démontrer que la fonction $f: x \longmapsto \int_0^{+\infty} e^{-t^2} \cos(xt) dt$ est de classe C^1 sur \mathbb{R} .
- 3. (a) Trouver une équation différentielle linéaire (E) d'ordre 1 dont f est solution.
 - (b) Résoudre (E).

Exercice 2

Les deux questions sont indépendantes.

- 1. Soit $f_n: x \to \frac{\ln\left(1+\frac{x}{n}\right)}{x(1+x^2)}$ et $u_n = n \int_0^{+\infty} f_n(x) dx$ pour tout entier naturel n non nul. Montrer que $(u_n)_{n\geqslant 1}$ est bien définie et converge vers une limite à préciser.
- 2. Calculer $\int_0^1 x^n (\ln(x))^n dx$ (avec *n* entier naturel) et en déduire que :

$$\int_0^1 x^{-x} dx = \sum_{n=1}^{+\infty} n^{-n}.$$

MP Sujet 3

Corrigé dès mercredi sur:

Semaine de colle: 6 https://cahier-de-prepa.fr/mp2i-dalzon/docs?kback Colles de Mathématiques de M Bacquelin

Question de cours

Énoncer correctement le théorème de dérivation des intégrales à paramètres.

Exercice 1

Banque CCINP:

- 1. Démontrer que, pour tout entier naturel n, la fonction $t \mapsto \frac{1}{1 + t^2 + t^n e^{-t}}$ est intégrable sur $[0, +\infty[$.
- 2. Pour tout $n \in \mathbb{N}$, on pose $u_n = \int_0^{+\infty} \frac{\mathrm{d}t}{1 + t^2 + t^n e^{-t}}$. Calculer $\lim_{n \to +\infty} (u_n)$.

Exercice 2

Les deux questions sont indépendantes.

- 1. Soit f une fonction continue de \mathbb{R}_+ dans \mathbb{C} . On suppose que f tend vers L en $+\infty$. Déterminer $\lim_{n\to+\infty} \left(\frac{1}{n} \int_0^n f(x) dx\right).$
- 2. Soit $g: x \mapsto \int_0^{+\infty} \frac{\exp(-tx^2)}{1+t^3} dt$.
 - (a) Calculer g(0) en réalisant le changement de variable $t = \frac{1}{u}$.
 - (b) Étudier les variations de g sur son domaine de définition.
 - (c) Étudier la limite de g en $+\infty$.