MP Sujet 1

Corrigé dès mercredi sur:

Semaine de colle: 7 https://cahier-de-prepa.fr/mp2i-dalzon/docs?kback Colles de Mathématiques de M Bacquelin

Question de cours

Soit α un réel strictement supérieur à 1. Montrer que $\sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}} \underset{+\infty}{\sim} \frac{1}{(\alpha-1)n^{\alpha-1}}$.

Exercice 1

Banque CCINP : On pose : $\forall x \in]0, +\infty[, \forall t \in]0, +\infty[, f(x,t) = e^{-t}t^{x-1}]$.

1. Démontrer que : $\forall x \in]0, +\infty[$, la fonction $t \mapsto f(x,t)$ est intégrable sur $]0, +\infty[$. On pose alors :

$$\forall x \in]0, +\infty[, \Gamma(x) = \int_0^{+\infty} e^{-t} t^{x-1} dt.$$

- 2. Pour tout $x \in]0, +\infty[$, exprimer $\Gamma(x+1)$ en fonction de $\Gamma(x)$.
- 3. Démontrer que Γ est de classe C^1 sur $]0; +\infty[$ et exprimer $\Gamma'(x)$ sous forme d'intégrale.

Exercice 2

Les deux questions sont indépendantes.

1. Pour tout entier naturel non nul n, on pose :

$$S_n = \sum_{k=1}^n \frac{1}{k + \sqrt{k}}.$$

Donner un équivalent de (S_n) puis montrer que :

$$S_n = \ln(n) + C + \underset{+\infty}{\circ} (1).$$

2. Soient f une fonction continue sur \mathbb{R}_+ et a et b deux réels tels que 0 < a < b. Déterminer la limite suivante :

$$\lim_{x \to 0} \left(\int_{ax}^{bx} \frac{f(t)}{t} dt \right).$$

MP Sujet 2

Corrigé dès mercredi sur:

Semaine de colle: 7 https://cahier-de-prepa.fr/mp2i-dalzon/docs?kback Colles de Mathématiques de M Bacquelin

Question de cours

Limite en
$$+\infty$$
 de $x \mapsto \sum_{n=1}^{+\infty} \frac{2x}{n^2 + x^2}$.

Exercice 1

Banque CCINP:

- 1. Énoncer le théorème de dérivation sous le signe intégrale.
- 2. Démontrer que la fonction $f: x \longmapsto \int_0^{+\infty} e^{-t^2} \cos(xt) dt$ est de classe C^1 sur \mathbb{R} .
- 3.(a) Trouver une équation différentielle linéaire (E) d'ordre 1 dont f est solution.
 - (b) Résoudre (E).

Exercice 2

Les deux questions sont indépendantes.

1. Pour tout entier naturel non nul n, on pose :

$$S_n = \sum_{k=1}^n \frac{1}{k^2 + \sqrt{k}}.$$

Montrer que (S_n) converge puis montrer que :

$$S_n = C - \frac{1}{n} + \mathop{\mathrm{o}}_{+\infty} \left(\frac{1}{n} \right).$$

2. Déterminer un équivalent en $+\infty$ de $x\mapsto \int_e^x \frac{dt}{\ln(t)}dt$.

MP Sujet 3

Corrigé dès mercredi sur:

Semaine de colle: 7 https://cahier-de-prepa.fr/mp2i-dalzon/docs?kback Colles de Mathématiques de M Bacquelin

Question de cours

Montrer que $\int_{x}^{+\infty} \exp(-x^{2}) dx \sim \frac{\exp(-x^{2})}{2x}$.

Exercice 1

Banque CCINP:

- 1. Démontrer que, pour tout entier naturel n, la fonction $t \mapsto \frac{1}{1+t^2+t^ne^{-t}}$ est intégrable sur $[0,+\infty[$.
- 2. Pour tout $n \in \mathbb{N}$, on pose $u_n = \int_0^{+\infty} \frac{\mathrm{d}t}{1 + t^2 + t^n e^{-t}}$. Calculer $\lim_{n \to +\infty} (u_n)$.

Exercice 2

Les deux questions sont indépendantes.

1. Pour tout entier naturel non nul n, on pose :

$$H_n = \sum_{k=1}^n \frac{1}{k}.$$

Pour tout entier naturel non nul p, on appelle n_p le plus petit entier naturel N tel que $H_N \ge p$. Donner un équivalent de (n_p) .

- 2.(a) Déterminer un équivalent quand x tend vers $+\infty$ de $\int_1^x \frac{\ln(1+t)}{t} dt$.
 - (b) Montrer qu'il existe un réel C et une fonction ε tendant vers 0 en $+\infty$ tel que :

$$\int_{1}^{x} \frac{\ln(1+t)dt}{t}dt = \frac{\ln^{2}(x)}{2} + C + \varepsilon(x).$$

(c) Déterminer un équivalent de ε en $+\infty$.