EXERCICE 25 analyse

Énoncé exercice 25

- 1. Démontrer que, pour tout entier naturel n, la fonction $t \mapsto \frac{1}{1+t^2+t^ne^{-t}}$ est intégrable sur $[0,+\infty[$.
- 2. Pour tout $n \in \mathbb{N}$, on pose $u_n = \int_0^{+\infty} \frac{\mathrm{d}t}{1 + t^2 + t^n e^{-t}}$. Calculer $\lim_{n \to +\infty} u_n$.

Corrigé exercice 25

1. $f_n: t \mapsto \frac{1}{1+t^2+t^n\mathrm{e}^{-t}}$ est définie et continue par morceaux sur $[0,+\infty[$.

De plus,
$$\forall t \in [0, +\infty[, |f_n(t)| \le \frac{1}{1+t^2} = \varphi(t).$$

Or
$$\varphi(t) \underset{+\infty}{\sim} \frac{1}{t^2}$$
 et $t \longmapsto \frac{1}{t^2}$ est intégrable sur $[1, +\infty[$, donc φ est intégrable sur $[1, +\infty[$. Donc, par critère de majoration pour les fonctions positives, f_n est intégrable sur $[1, +\infty[$.

Or f_n est continue sur [0,1] donc f_n est intégrable sur $[0,+\infty[$.

2. i) La suite de fonctions (f_n) converge simplement sur $[0, +\infty[$ vers la fonction f définie par :

$$f(t) = \begin{cases} \frac{1}{1+t^2} & \text{si } t \in [0,1[\\ \frac{1}{2+e^{-1}} & \text{si } t = 1\\ 0 & \text{si } t \in]1, +\infty[\end{cases}$$

- ii) Les fonctions f_n et f sont continues par morceaux sur $[0, +\infty[$.
- iii) $\forall t \in [0, +\infty[, |f_n(t)| \leq \varphi(t) \text{ avec } \varphi \text{ intégrable sur } [0, +\infty[.$

Alors, d'après le théorème de convergence dominée,
$$\lim_{n\to+\infty}u_n=\lim_{n\to+\infty}\int_0^{+\infty}f_n(t)\,\mathrm{d}t=\int_0^{+\infty}f(t)\,\mathrm{d}t.$$

Or
$$\int_0^{+\infty} f(t) dt = \int_0^1 \frac{dt}{1+t^2} = \frac{\pi}{4}$$
.

Donc,
$$\lim_{n \to +\infty} u_n = \frac{\pi}{4}$$
.

EXERCICE 29 analyse

Enoncé exercice 29

On pose: $\forall x \in]0, +\infty[, \forall t \in]0, +\infty[, f(x,t) = e^{-t}t^{x-1}]$.

1. Démontrer que : $\forall x \in]0, +\infty[$, la fonction $t \mapsto f(x,t)$ est intégrable sur $]0, +\infty[$.

On pose alors : $\forall x \in]0, +\infty[$, $\Gamma(x) = \int_{0}^{+\infty} e^{-t} t^{x-1} dt$.

- 2. Pour tout $x \in]0, +\infty[$, exprimer $\Gamma(x+1)$ en fonction de $\Gamma(x)$.
- 3. Démontrer que Γ est de classe C^1 sur $]0,+\infty[$ et exprimer $\Gamma'(x)$ sous forme d'intégrale.

Corrigé exercice 29

1. Soit $x \in]0, +\infty[$.

La fonction $t \mapsto e^{-t}t^{x-1}$ est définie, positive et continue par morceaux sur $]0, +\infty[$.

 $f(x,t) \underset{t \to 0^+}{\sim} t^{x-1} \text{ et } t \longmapsto t^{x-1} = \frac{1}{t^{1-x}} \text{ est intégrable sur }]0,1] \text{ (fonction de Riemann avec } 1-x < 1).$

Donc, par critère d'équivalence, $t \longmapsto f(x,t)$ est intégrable sur]0,1] . (*)

De plus, $\lim_{t\to+\infty}t^2f(x,t)=0$, donc, pour t au voisinage de $+\infty$, $f(x,t)=o(\frac{1}{\epsilon^2})$.

Or $t \mapsto \frac{1}{t^2}$ est intégrable sur $[1, +\infty[$ (fonction de Riemann intégrable).

Donc $t \mapsto f(x,t)$ est intégrable sur $[1,+\infty[$. (**)

Donc, d'après (*) et (**), $t \mapsto f(x,t)$ est intégrable sur $]0,+\infty[$.

2. Par intégration par parties, justifiée ci-après $\int_0^{+\infty} e^{-t}t^x dt = \left[-e^{-t}t^x\right]_0^{+\infty} + x \int_0^{+\infty} e^{-t}t^{x-1} dt.$

Le terme de variation possède des limites finies à ses bornes par croissances comparées, et est de valeur nulle, ce qui valide ce calcul et donne

 $\Gamma(x+1) = x\Gamma(x)$.

- 3. i) pour tout x > 0, $t \mapsto f(x,t)$ est continue par morceaux et intégrable sur $]0, +\infty[$ (d'après la question 1.).
 - ii) $\forall t \in]0, +\infty[$, la fonction $x \mapsto f(x,t)$ est dérivable et $\forall (x,t) \in]0, +\infty[^2, \frac{\partial f}{\partial x}(x,t) = (\ln t)e^{-t}t^{x-1}]$.
 - iii) Pour tout x > 0, $t \mapsto \frac{\partial f}{\partial x}(x,t)$ est continue par morceaux sur $]0, +\infty[$.

iv) Pour tout
$$t > 0$$
, $x \mapsto \frac{\partial f}{\partial x}(x,t)$ est continue sur $]0, +\infty[$.
v) Pour tout $[a,b] \subset]0, +\infty[$ et $\forall (t,x) \in]0, +\infty[\times [a,b] :$

$$\left|\frac{\partial f}{\partial x}(x,t)\right| \leqslant \varphi(t) \text{ avec } \varphi(t) = \left\{ \begin{array}{ll} |\ln t| \mathrm{e}^{-t} t^{a-1} & \mathrm{si} & t \in]0,1[\\ |\ln t| \mathrm{e}^{-t} t^{b-1} & \mathrm{si} & t \in [1,+\infty[]] \end{array} \right.$$

avec φ continue par morceaux et intégrable sur $]0, +\infty[$

$$\varphi(t) \underset{0^{+}}{\sim} |\ln t| t^{a-1} = \varphi_{1}(t) \text{ et } \lim_{t \to 0^{+}} t^{1-\frac{a}{2}} \varphi_{1}(t) = \lim_{t \to 0} t^{\frac{a}{2}} |\ln t| = 0.$$

Donc, au voisinage de 0^+ , $\varphi_1(t) = o\left(\frac{1}{\frac{a}{t^1 - \frac{a}{2}}}\right)$.

Or $t \mapsto \frac{1}{t^{1-\frac{a}{2}}}$ est intégrable sur]0,1[(fonction de Riemann avec $1-\frac{a}{2}<1).$

Donc, φ_1 est intégrable sur]0,1[.

Donc, par critère d'équivalence pour les fonctions positives, φ est intégrable sur]0,1[.

 $\lim_{t \to +\infty} t^2 \varphi(t) = 0.$

Donc, pour t au voisinage de $+\infty$, $\varphi(t) = o(\frac{1}{t^2})$.

Or, $t\longmapsto \frac{1}{t^2}$ est intégrable sur $[1,+\infty[$ (fonction de Riemann intégrable). Donc φ est intégrable sur $[1,+\infty[$. (**)

D'après (*) et (**), φ est intégrable sur $]0, +\infty[$.

D'où, d'après le théorème de dérivation des intégrales à paramètres,
$$\Gamma$$
 est de classe \mathcal{C}^1 sur $]0,+\infty[$. De plus, $\forall\,x\in]0,+\infty[$, $\Gamma'(x)=\int_0^{+\infty}{(\ln t)\mathrm{e}^{-t}t^{x-1}\,\mathrm{d}t}.$

EXERCICE 30 analyse

Énoncé exercice 30

- 1. Énoncer le théorème de dérivation sous le signe intégrale.
- 2. Démontrer que la fonction $f: x \longmapsto \int_0^{+\infty} e^{-t^2} \cos(xt) dt$ est de classe C^1 sur \mathbb{R} .
- 3. (a) Trouver une équation différentielle linéaire (E) d'ordre 1 dont f est solution.
 - (b) Résoudre (E).

Corrigé exercice 30

1. Soit $u:(x,t)\mapsto u(x,t)$ une fonction définie de $X\times I$ vers \mathbb{C} , avec X et I intervalles contenant au moins deux points de \mathbb{R} .

On suppose que :

i) $\forall x \in X, t \longmapsto u(x,t)$ est continue par morceaux et intégrable sur I.

On pose alors $\forall x \in X$, $f(x) = \int_I u(x, t) dt$.

- ii) u admet une dérivée partielle $\frac{\partial u}{\partial x}$ sur $X \times I$ vérifiant :
- $\forall x \in X, t \mapsto \frac{\partial u}{\partial x}(x, t)$ est continue par morceaux sur I.
- $\forall t \in I, x \mapsto \frac{\partial x}{\partial x}(x, t) \text{ est continue sur } X.$
- iii) il existe $\varphi: I \to \mathbb{R}^+$ continue par morceaux, positive et intégrable sur I vérifiant :

 $\forall (x,t) \in X \times I, \left| \frac{\partial u}{\partial x}(x,t) \right| \leqslant \varphi(t).$

Alors la fonction f est de classe \mathcal{C}^1 sur X et $\forall x \in X, f'(x) = \int_I \frac{\partial u}{\partial x}(x,t) \, \mathrm{d}t.$

- 2. On pose $\forall (x,t) \in \mathbb{R} \times [0,+\infty[, u(x,t) = e^{-t^2}\cos(xt).$
 - i) $\forall x \in \mathbb{R}, t \longmapsto u(x,t)$ est continue sur $[0,+\infty[$.

De plus, $\forall x \in \mathbb{R}, |u(x,t)| \leq e^{-t^2}$.

Or $\lim_{t \to +\infty} t^2 e^{-t^2} = 0$, donc, au voisinage de $+\infty$, $e^{-t^2} = o\left(\frac{1}{t^2}\right)$.

Donc, $t \longmapsto u(x,t)$ est intégrable sur $[0,+\infty[$.

- ii) $\forall (x,t) \in \mathbb{R} \times [0,+\infty[,\frac{\partial u}{\partial x}(x,t) = -te^{-t^2}\sin(xt).$
- $\forall x \in \mathbb{R}, t \mapsto \frac{\partial u}{\partial x}(x,t)$ est continue par morceaux sur $[0,+\infty[$.
- $\forall t \in [0, +\infty], x \mapsto \frac{\partial u}{\partial x}(x, t)$ est continue sur $\mathbb R$.
- -iii) $\forall (x,t) \in \mathbb{R} \times [0,+\infty[,\left|\frac{\partial u}{\partial x}(x,t)\right|] \leqslant t e^{-t^2} = \varphi(t)$ avec φ continue par morceaux, positive et intégrable sur $[0,+\infty[$.

En effet, $\lim_{t \to +\infty} t^2 \varphi(t) = 0$ donc, au voisinage de $+\infty$, $\varphi(t) = o(\frac{1}{t^2})$.

On en déduit que φ est intégrable sur $[1, +\infty[$ et comme elle est continue sur [0, 1[, alors φ est bien intégrable sur $[0, +\infty[$.

Donc f est de classe \mathcal{C}^1 sur \mathbb{R} et :

$$\forall x \in \mathbb{R}, f'(x) = \int_0^{+\infty} -t e^{-t^2} \sin(xt) dt$$

3. (a) On a, $\forall x \in \mathbb{R}$, $f'(x) = \int_{0}^{+\infty} -te^{-t^2} \sin(xt) dt$.

Procédons à une intégration par parties, justifiée par l'existence immédiate de limites finies aux bornes du terme de variation.

$$\int_0^{+\infty} -t e^{-t^2} \sin(xt) dt = \left[\frac{1}{2} e^{-t^2} \sin(xt) \right]_0^{+\infty} - \int_0^{+\infty} \frac{x}{2} e^{-t^2} \cos(xt) dt$$

ce qui donne
$$f'(x) + \frac{x}{2}f(x) = 0$$
.

ce qui donne
$$f'(x) + \frac{x}{2}f(x) = 0$$
.
Donc f est solution de l'équation différentielle $(E): y' + \frac{x}{2}y = 0$.

(b) Les solutions de
$$(E)$$
 sont les fonctions y définies par $y(x)=A\mathrm{e}^{-\dfrac{x^2}{4}}$, avec $A\in\mathbb{R}.$

 $\frac{1}{k+\sqrt{k}} \sim \frac{1}{k}$ et $\sum_{k\geqslant 1} \frac{1}{k}$ est une série à terme positif divergente donc $S_n \sim \sum_{k=1}^n \frac{1}{k} \sim \ln n$. Pour être plus précis,

$$S_n - \sum_{k=1}^n \frac{1}{k} = \sum_{k=1}^n \left(\frac{1}{k + \sqrt{k}} - \frac{1}{k} \right) = \sum_{k=1}^n \frac{\sqrt{k}}{k^2 + k\sqrt{k}}$$

or

$$\frac{\sqrt{k}}{k^2 + k\sqrt{k}} \sim \frac{1}{k^{3/2}}$$

et est donc le terme général d'une série convergente.

Ainsi $S_n - \sum_{k=1}^n \frac{1}{k} \to C'$ d'où

$$S_n = \ln n + (\gamma + C') + o(1) = \ln n + C + o(1)$$

 $\frac{1}{k^2+\sqrt{k}}\sim\frac{1}{k^2}$ donc la série de terme général $\frac{1}{k^2+\sqrt{k}}$ est absolument convergente. Par suite (S_n) converge

$$C - S_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^2 + \sqrt{k}} \sim \sum_{k=n+1}^{+\infty} \frac{1}{k^2}$$

car $\sum_{k\geq 1} \frac{1}{k^2}$ est une série à termes positifs convergente.

Par comparaison série intégrale $\sum_{k=n+1}^{+\infty} \frac{1}{k^2} \sim \frac{1}{n}$ et on peut conclure comme annoncée.

 n_p est bien défini car $H_n \to +\infty$.

La suite (n_p) est croissante et évidemment non majorée donc

$$n_p \to +\infty$$

Par définition de n_p , on a

$$H_{n_p} \geqslant p \geqslant H_{n_p-1}$$

Or

$$H_n = \ln n + \gamma + o(1)$$

donc

$$\ln n_p + \gamma + o(1) \geqslant p \geqslant \ln(n_p - 1) + \gamma + o(1)$$

Puisque

$$\ln(n_p - 1) = \ln n_p + o(1)$$

on obtient

$$p = \ln n_p + \gamma + o(1)$$

puis

$$n_p = e^{n-\gamma+o(1)} \sim e^{n-\gamma}$$

Puisque f est continue en 0, on peut écrire

$$f(x) = f(0) + \varepsilon(x)$$
 avec $\varepsilon \to 0$

On a alors

$$\int_{ax}^{bx} \frac{f(t)}{t} dt = \int_{ax}^{bx} \frac{f(0)}{t} dt + \int_{ax}^{bx} \frac{\varepsilon(t)}{t} dt$$

D'une part

$$\int_{a}^{bx} \frac{f(0)}{t} dt = f(0) \ln \frac{b}{a}$$

et d'autre part

$$\left| \int_{ax}^{bx} \frac{\varepsilon(t)}{t} \, \mathrm{d}t \right| \leqslant \max_{t \in [ax,bx]} |\varepsilon(t)| \ln \frac{b}{a} \xrightarrow[x \to 0]{} 0$$

On peut conclure

$$\lim_{x \to 0^+} \int_{ax}^{bx} \frac{f(t)}{t} dt = f(0) \ln \frac{b}{a}$$

Par intégration par parties

$$\int_{e}^{x} \frac{\mathrm{d}t}{\ln t} = \left[\frac{t}{\ln t}\right]_{e}^{x} + \int_{e}^{x} \frac{\mathrm{d}t}{(\ln t)^{2}}$$

Or

$$\frac{1}{(\ln t)^2} \underset{t \to +\infty}{=} o\left(\frac{1}{\ln t}\right)$$

et la fonction $t\mapsto 1/\ln(t)$ est positive non intégrable sur $[e,+\infty[$. On a donc

$$\int_{\mathrm{e}}^{x} \frac{\mathrm{d}t}{(\ln t)^{2}} \underset{x \to +\infty}{=} o\left(\int_{\mathrm{e}}^{x} \frac{\mathrm{d}t}{\ln t}\right)$$

et on en déduit

$$\int_{c}^{x} \frac{\mathrm{d}t}{\ln t} \underset{x \to +\infty}{\sim} \frac{x}{\ln x}$$

a) On a

$$\frac{\ln(t+1)}{t} \sim \frac{\ln(t)}{t}$$

 $\frac{\ln(t+1)}{t} \mathop{\sim}_{t \to +\infty} \frac{\ln(t)}{t}$ Puisque la fonction $t \mapsto \ln(t)/t$ est positive, non intégrable sur $[1,+\infty[$, on peut

$$\int_1^x \frac{\ln(t+1)}{t} dt \underset{x \to +\infty}{\sim} \int_1^x \frac{\ln t}{t} dt = \left[\frac{1}{2} (\ln t)^2 \right]_1^x = \frac{1}{2} (\ln x)^2$$

b) On a

$$\int_{1}^{x} \frac{\ln(t+1)}{t} dt - \frac{1}{2} (\ln x)^{2} = \int_{1}^{x} \frac{\ln(t+1)}{t} - \frac{\ln(t)}{t} dt = \int_{1}^{x} \frac{1}{t} \ln\left(1 + \frac{1}{t}\right) dt$$

$$\int_{1}^{x} \frac{\ln(t+1)}{t} dt = \frac{1}{2} (\ln x)^{2} + C + o(1)$$

$$\int_{1}^{+\infty} \frac{1}{t} \ln \left(1 + \frac{1}{t} \right) dt$$

On peut montrer que cette constante vaut $\pi^2/12$ (via intégration terme à terme),

c) En fait

$$\varepsilon(x) = -\int_{x}^{+\infty} \frac{1}{t} \ln \left(1 + \frac{1}{t}\right) dt$$

On a

$$\frac{1}{t}\ln\left(1+\frac{1}{t}\right) \underset{t\to+\infty}{\sim} \frac{1}{t^2}$$

Puisque la fonction $t\mapsto 1/t^2$ est positive et intégrable sur $[1,+\infty[$, on peut

$$\varepsilon(x) \underset{x \to +\infty}{\sim} - \int_{x}^{+\infty} \frac{\mathrm{d}t}{t^{2}} = \frac{1}{x}$$