MP Sujet 1

Corrigé dès mercredi sur:

 $Semaine \ de \ colle: 8 \ \ https://cahier-de-prepa.fr/mp2i-dalzon/docs?kback$

Colles de mathématiques de M Bacquelin

Question de cours

Déterminer les éléments propres de la matrice de taille n (entier supérieur à 3) ne contenant que des 0 sauf des un sur la dernière ligne et la dernière colonne.

Exercice 1

Banque CCINP: Soient n un entier naturel tel que $n \ge 2$ et E l'espace vectoriel des polynômes à coefficients dans \mathbb{K} de degré inférieur ou égal à n.

On pose : $\forall P \in E, f(P) = P - P'$.

- 1. Démontrer que f est bijectif de deux manières :
 - (a) sans utiliser de matrice de f,
 - (b) en utilisant une matrice de f.
- 2. Soit $Q \in E$. Trouver P tel que f(P) = Q . **Indication** : si $P \in E$, quel est le polynôme $P^{(n+1)}$?
- 3. f est-il diagonalisable?

Exercice 2

Ces deux questions sont indépendantes.

- 1. Soit f un endomorphisme d'un \mathbb{K} ev E de dimension finie.
 - (a) On suppose que 0 est une valeur propre de f^2 , montrer que f n'est pas surjective.
 - (b) On suppose que 0 n'est pas une valeur propre de f, montrer que f est un automorphisme et expliciter les valeurs propres de son inverse.
- 2. Soient E l'espace des fonctions numériques et continues sur \mathbb{R} et I l'endomorphisme de E qui à une fonction f de E associe sa primitive qui s'annule en 0. Expliciter le spectre de I.

MP Sujet 2

Corrigé dès mercredi sur:

Semaine de colle: 8 https://cahier-de-prepa.fr/mp2i-dalzon/docs?kback Colles de Mathématiques de M Bacquelin

Question de cours

Déterminer le polynôme caractéristique d'un projecteur p d'un \mathbb{R} -ev de dimension finie.

Exercice 1

Banque CCINP: Soit E un espace vectoriel sur \mathbb{R} ou \mathbb{C} . Soit $f \in \mathcal{L}(E)$ tel que $f^2 - f - 2\mathrm{Id} = 0$.

- 1. Prouver que f est bijectif et exprimer f^{-1} en fonction de f.
- 2. Prouver que $E = \text{Ker}(f + \text{Id}) \oplus \text{Ker}(f 2\text{Id})$:
 - (a) en utilisant le lemme des noyaux.
 - (b) sans utiliser le lemme des noyaux.
- 3. Dans cette question, on suppose que E est de dimension finie. Prouver que Im(f + Id) = Ker(f 2Id).

Exercice 2

Ces deux questions sont indépendantes.

1. Soient E l'espace des suites réelles convergeant vers 0 et Δ l'endomorphisme de E défini par :

$$\Delta: u \mapsto (u_{n+1} - u_n)_{n \in \mathbb{N}}$$

- (a) Vérifier que E est un espace vectoriel et que Δ est un endomorphisme de E.
- (b) Expliciter le spectre de $\Delta.$
- (c) Δ est-il injectif?
- 2. Soient $(A, B) \in (\mathcal{M}_n(\mathbb{C}))^2$ avec n un entier naturel non nul. On désire établir l'égalité des polynômes caractéristiques

$$\chi_{AB} = \chi_{BA}$$

- (a) Établir l'égalité quand $A \in GL_n(\mathbb{C})$.
- (b) Pour $A \notin GL_n(\mathbb{C})$, justifier que $A + \frac{1}{p}I_n \in GL_n(\mathbb{C})$ pour p entier naturel assez grand.
- (c) En déduire que l'égalité est encore vraie pour ${\cal A}$ non inversible.

MP Sujet 3

Corrigé dès mercredi sur:

Semaine de colle: 8 https://cahier-de-prepa.fr/mp2i-dalzon/docs?kback Colles de Mathématiques de M Bacquelin

Question de cours

Déterminer χ_A et π_A avec :

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}.$$

Exercice 1

Banque CCINP: Soit u un endomorphisme d'un espace vectoriel E sur le corps \mathbb{K} $(=\mathbb{R} \text{ ou } \mathbb{C})$. On note $\mathbb{K}[X]$ l'ensemble des polynômes à coefficients dans \mathbb{K} .

1. Démontrer que :

$$\forall (P,Q) \in \mathbb{K}[X] \times \mathbb{K}[X], \ (PQ)(u) = P(u) \circ Q(u) \ .$$

- 2.(a) Démontrer que : $\forall (P,Q) \in \mathbb{K}[X] \times \mathbb{K}[X], \ P(u) \circ Q(u) = Q(u) \circ P(u)$.
 - (b) Démontrer que, pour tout $(P,Q) \in \mathbb{K}[X] \times \mathbb{K}[X]$:

 $(P \text{ polynôme annulateur de } u) \Longrightarrow (PQ \text{ polynôme annulateur de } u)$

3. Soit $A = \begin{pmatrix} -1 & -2 \\ 1 & 2 \end{pmatrix}$. Écrire le polynôme caractéristique de A, puis en déduire que le polynôme $R = X^4 + 2X^3 + X^2 - 4X$ est un polynôme annulateur de A.

Exercice 2

Ces deux questions sont indépendantes.

1. Soient a et b deux réels, on pose : $M(a,b) = \begin{pmatrix} a^2 & ab & ab & b^2 \\ ab & a^2 & b^2 & ab \\ ab & b^2 & a^2 & ab \\ b^2 & ab & ab & a^2 \end{pmatrix}$. On admet que

M(a,b) a trois valeurs propres. Expliciter les ainsi que les sous-espaces propres associés.

2. Soient E l'espace des fonctions numériques continues sur \mathbb{R}_+ convergeant en $+\infty$ et T l'endomorphisme de E défini par :

$$\forall f \in E, \forall x \in \mathbb{R}_+, (T(f))(x) = f(x+1).$$

Expliciter le spectre de ${\cal T}$ ainsi que ses vecteurs propres.