BANQUE ALGÈBRE

EXERCICE 59 algèbre

Énoncé exercice 59

Soit n un entier naturel tel que $n \ge 2$.

Soit E l'espace vectoriel des polynômes à coefficients dans \mathbb{K} ($\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$) de degré inférieur ou égal à n. On pose : $\forall P \in E$, f(P) = P - P'.

- 1. Démontrer que f est bijectif de deux manières :
 - (a) sans utiliser de matrice de f,
 - (b) en utilisant une matrice de f.
- 2. Soit $Q \in E$. Trouver P tel que f(P) = Q.

Indication : si $P \in E$, quel est le polynôme $P^{(n+1)}$?

3. f est-il diagonalisable?

Corrigé exercice 59

1. f est clairement linéaire. (*) De plus, $\forall P \in E \setminus \{0\}$, $\deg P' < \deg P$ donc $\deg(P - P') = \deg P$.

Et, si P=0, alors P-P'=0 donc $\deg(P-P')=\deg P=-\infty$.

On en déduit que $\forall P \in E$, deg $f(P) = \deg P$.

Donc $f(E) \subset E$. (**)

D'après (*) et (**), f est bien un endomorphisme de E.

(a) Déterminons Ker f.

Soit $P \in \operatorname{Ker} f$.

f(P) = 0 donc P - P' = 0 donc $\deg(P - P') = -\infty$.

Or, d'après ce qui précéde, $\deg(P-P') = \deg P$ donc $\deg P = -\infty$.

Donc P = 0.

On en déduit que $Ker f = \{0\}$.

Donc f est injectif.

Or, $f \in \mathcal{L}(E)$ et E est de dimension finie (dim E = n + 1) donc f est bijectif.

(b) Soit $e = (1, X, ..., X^n)$ la base canonique de E. Soit A la matrice de f dans la base e.

$$A = \begin{pmatrix} 1 & -1 & & (0) \\ & 1 & \ddots & \\ & & \ddots & -n \\ (0) & & 1 \end{pmatrix} \in \mathcal{M}_{n+1}(\mathbb{R}).$$

 $\det A = 1$ d'où $\det A \neq 0$

Donc f est bijectif.

2. Soit $Q \in E$.

D'après 1. :
$$\exists \, !P \in E$$
, tel que $f(P) = Q$. $P - P' = Q$, $P' - P'' = Q', \dots$, $P^{(n)} - P^{(n+1)} = Q^{(n)}$.

Or $P^{(n+1)} = 0$, donc, en sommant ces n+1 égalités, $P = Q + Q' + \cdots + Q^{(n)}$.

3. Reprenons les notations de 1.(b).

Tout revient à se demander si A est diagonalisable.

Notons χ_A le polynôme caractéristique de A.

D'après 1.(b), on a $\chi_A = (X - 1)^{n+1}$.

Donc 1 est l'unique valeur propre de A.

Ainsi, si A était diagonalisable, alors A serait semblable à la matrice unité I_{n+1} .

On a urait donc $A = I_{n+1}$.

Ce qui est manifestement faux car $f \neq \text{Id}$.

Donc A n'est pas diagonalisable et par conséquent, f n'est pas diagonalisable.

Mise à jour : 24/01/2025

EXERCICE 62 algèbre

Enoncé exercice 62

Soit E un espace vectoriel sur \mathbb{R} ou \mathbb{C} . Soit $f \in \mathcal{L}(E)$ tel que $f^2 - f - 2\mathrm{Id} = 0$.

- 1. Prouver que f est bijectif et exprimer f^{-1} en fonction de f.
- 2. Prouver que $E = \text{Ker}(f + \text{Id}) \oplus \text{Ker}(f 2\text{Id})$:
 - (a) en utilisant le lemme des noyaux.
 - (b) sans utiliser le lemme des noyaux.
- 3. Dans cette question, on suppose que E est de dimension finie. Prouver que $\operatorname{Im}(f + \operatorname{Id}) = \operatorname{Ker}(f - 2\operatorname{Id}).$

Corrigé exercice 62

1. f est linéaire donc :

$$f^2 - f - 2\operatorname{Id} = 0 \iff f \circ (f - \operatorname{Id}) = (f - \operatorname{Id}) \circ f = 2\operatorname{Id} \iff f \circ (\frac{1}{2}f - \frac{1}{2}\operatorname{Id}) = (\frac{1}{2}f - \frac{1}{2}\operatorname{Id}) \circ f = \operatorname{Id}.$$

On en déduit que f est inversible, donc bijectif, et que $f^{-1} = \frac{1}{2}f - \frac{1}{2}Id$.

2. (a) On pose $P = X^2 - X - 2$. On a P = (X + 1)(X - 2).

$$P_1 = X + 1$$
 et $P_2 = X - 2$ sont premiers entre eux.

Donc, d'après le lemme des noyaux, $\operatorname{Ker} P(f) = \operatorname{Ker} P_1(f) \oplus \operatorname{Ker} P_2(f)$.

Or P est annulateur de f, donc KerP(f) = E.

Donc $E = \text{Ker}(f + \text{Id}) \oplus \text{Ker}(f - 2\text{Id}).$

(b) Analyse (unicité):

Soit $x \in E$. Supposons que x = a + b avec $a \in \text{Ker}(f + \text{Id})$ et $b \in \text{Ker}(f - 2\text{Id})$.

Alors par linéarité de f, f(x) = f(a) + f(b) = -a + 2b.

On en déduit que
$$a = \frac{2x - f(x)}{3}$$
 et $b = \frac{x + f(x)}{3}$.

Synthèse (existence):

Soit
$$x \in E$$
. On pose $a = \frac{2x - f(x)}{3}$ et $b = \frac{x + f(x)}{3}$.

On a bien
$$x = a + b$$
. (*)

On a bien
$$x = a + b$$
. (*)
$$(f + \operatorname{Id})(a) = \frac{1}{3} (2f(x) - f^2(x) + 2x - f(x)) = \frac{1}{3} (-f^2(x) + f(x) + 2x) = 0 \text{ car } f^2 - f - 2\operatorname{Id} = 0.$$
 Donc $a \in \operatorname{Ker}(f + \operatorname{Id})$. (**)

$$(f - 2\mathrm{Id})(b) = \frac{1}{3} \left(f(x) + f^2(x) - 2x - 2f(x) \right) = \frac{1}{3} \left(f^2(x) - f(x) - 2x \right) = 0 \text{ car } f^2 - f - 2\mathrm{Id} = 0.$$
 Donc $b \in \mathrm{Ker}(f - 2\mathrm{Id})$. (***)

D'après (*), (**) et (***),
$$x = a + b$$
 avec $a \in \text{Ker}(f + \text{Id})$ et $b \in \text{Ker}(f - 2\text{Id})$.

Conclusion : $E = \text{Ker}(f + \text{Id}) \oplus \text{Ker}(f - 2\text{Id})$.

3. Prouvons que $\operatorname{Im}(f + \operatorname{Id}) \subset \operatorname{Ker}(f - 2\operatorname{Id})$.

Soit
$$y \in \text{Im}(f + \text{Id})$$
.

$$\exists x \in E / y = f(x) + x.$$

Alors
$$(f-2\mathrm{Id})(y) = f(y) - 2y = f^2(x) + f(x) - 2f(x) - 2x = f^2(x) - f(x) - 2x = 0$$
 car $f^2 - f - 2\mathrm{Id} = 0$.

Donc $y \in \text{Ker}(f - 2\text{Id})$.

Donc
$$\operatorname{Im}(f + \operatorname{Id}) \subset \operatorname{Ker}(f - 2\operatorname{Id}).$$
 (*)

Posons dim E = n.

D'après 2.,
$$n = \dim \operatorname{Ker}(f + \operatorname{Id}) + \dim \operatorname{Ker}(f - 2\operatorname{Id})$$
.

De plus, d'après le théorème du rang,
$$n = \dim \operatorname{Ker}(f + \operatorname{Id}) + \dim \operatorname{Im}(f + \operatorname{Id})$$
.

On en déduit que dim
$$\operatorname{Im}(f + \operatorname{Id}) = \dim \operatorname{Ker}(f - 2\operatorname{Id})$$
. (**)

Donc, d'après (*) et (**),
$$\operatorname{Im}(f + \operatorname{Id}) = \operatorname{Ker}(f - 2\operatorname{Id})$$
.

Mise à jour : 24/01/2025

EXERCICE 65 algèbre

Énoncé exercice 65

Soit u un endomorphisme d'un espace vectoriel E sur le corps \mathbb{K} (= \mathbb{R} ou \mathbb{C}). On note $\mathbb{K}[X]$ l'ensemble des polynômes à coefficients dans \mathbb{K} .

- 1. Démontrer que : $\forall (P,Q) \in \mathbb{K}[X] \times \mathbb{K}[X], \ (PQ)(u) = P(u) \circ Q(u)$.
- 2. (a) Démontrer que : $\forall (P,Q) \in \mathbb{K}[X] \times \mathbb{K}[X], \ P(u) \circ Q(u) = Q(u) \circ P(u)$.
 - (b) Démontrer que, pour tout $(P,Q) \in \mathbb{K}[X] \times \mathbb{K}[X]$: $(P \text{ polynôme annulateur de } u) \Longrightarrow (PQ \text{ polynôme annulateur de } u)$
- 3. Soit $A = \begin{pmatrix} -1 & -2 \\ 1 & 2 \end{pmatrix}$.

Écrire le polynôme caractéristique de A, puis en déduire que le polynôme $R = X^4 + 2X^3 + X^2 - 4X$ est un polynôme annulateur de A.

Corrigé exercice 65

1. Soit $(P,Q) \in (\mathbb{K}[X])^2$.

$$P = \sum_{p=0}^{n} a_p X^p \text{ et } Q = \sum_{q=0}^{m} b_q X^q.$$

Donc
$$PQ = \sum_{p=0}^{n} \sum_{q=0}^{m} (a_p b_q X^{p+q}).$$

Donc
$$(PQ)(u) = \sum_{p=0}^{n} \sum_{q=0}^{m} (a_p b_q u^{p+q})$$
 (*)

Or
$$P(u) \circ Q(u) = \left(\sum_{p=0}^{n} a_p u^p\right) \circ \left(\sum_{q=0}^{m} b_q u^q\right) = \sum_{p=0}^{n} \left(a_p u^p \circ \sum_{q=0}^{m} b_q u^q\right).$$

Donc, par linéarité de
$$u, P(u) \circ Q(u) = \sum_{p=0}^{n} \left(\sum_{q=0}^{p=0}^{n} a_p u^p \circ b_q u^q \right) = \sum_{p=0}^{n} \sum_{q=0}^{m} \left(a_p b_q u^{p+q} \right).$$
 (**)

D'après (*) et (**), $(PQ)(u) = P(u) \circ Q(u)$.

2. (a) Soit $(P,Q) \in (\mathbb{K}[X])^2$.

D'après 1., $P(u) \circ Q(u) = (PQ)(u)$.

De même, d'après 1., $Q(u) \circ P(u) = (QP)(u)$.

Or PQ = QP donc (PQ)(u) = (QP)(u).

On en déduit que $P(u) \circ Q(u) = Q(u) \circ P(u)$.

(b) Soit $(P,Q) \in (\mathbb{K}[X])^2$.

On suppose que P est annulateur de u.

Prouvons que PQ est annulateur de u.

D'après 1. , $(PQ)(u) = P(u) \circ Q(u)$.

Or P est annulateur de u donc P(u) = 0 donc (PQ)(u) = 0.

On en déduit que PQ est annulateur de u.

3. Notons $P_A(X)$ le polynôme caractéristique de A.

 $P_A(X) = \det(XI_2 - A)$. On trouve $P_A(X) = X(X - 1)$.

Soit $R = X^4 + 2X^3 + X^2 - 4X$.

On remarque que R(0) = R(1) = 0 et on en déduit que R est factorisable par X(X - 1).

C'est-à-dire : $\exists Q \in \mathbb{K}[X] / R = X(X - 1)Q$.

Or, d'après le théorème de Cayley-Hamilton, $P_A(X) = X(X-1)$ annule A.

Donc, d'après 2.b., comme $R = P_A(X)Q$, R est annulateur de A.

Mise à jour : 24/01/2025

Soient $\lambda \in \mathbb{R}$ et $u \in E$.

$$\Delta(u) = \lambda u \Leftrightarrow \forall n \in \mathbb{N}, u(n+1) = (1 + \lambda)u(n)$$

Ainsi

$$\Delta(u) = \lambda u \Leftrightarrow \forall n \in \mathbb{N}, u(n) = u_0(1 + \lambda)^n$$

Pour $\lambda \in]-2,0[$, la suite $u(n)=(1+\lambda)^n$ est élément non nul de E et vérifie $\Delta(u)=\lambda u,$

Pour $\lambda \notin]-2,0[$, seule la suite nulle est converge vers 0 et satisfait

$$\forall n \in \mathbb{N}, u(n) = u_0(1 + \lambda)^n$$

On peut donc conclure

$$Sp(\Delta) =]-2, 0[$$

Soient $\lambda \in \mathbb{R}$ et $f \in E$. Si $I(f) = \lambda f$ alors I(f) est solution de l'équation différentielle

$$y = \lambda y'$$

Si $\lambda = 0$ alors I(f) = 0.

Si $\lambda \neq 0$ alors I(f) est de la forme $x \mapsto Ce^{x/\lambda}$ et puisque I(f) s'annule en 0 donc I(f) = 0.

Dans les deux cas f = I(f)' = 0. Ainsi

$$Sp(I) = \emptyset$$

Soit λ un réel et f une fonction élément de E.

Si $T(f) = \lambda f$ alors

$$\forall x \in [0, +\infty[, f(x+1) = \lambda f(x)]$$

En passant cette relation à la limite quand $x \to +\infty$, on obtient

$$\ell = \lambda \ell$$

en notant ℓ la limite de f.

Cas $\ell \neq 0$:

Nécessairement $\lambda = 1$ et

$$\forall x \in [0, +\infty]$$
, $f(x+1) = f(x)$

Puisque la fonction f est périodique et converge en $+\infty$, elle est constante. Inversement, toute fonction constante non nulle est vecteur propre associé à la valeur propre 1.

Cas $\ell = 0$:

Si λ est valeur propre alors en introduisant f vecteur propre associé, il existe $x_0 \in [0,+\infty[$ tel que $f(x_0) \neq 0$ et la relation $T(f) = \lambda f$ donne par récurrence

$$\forall n \in \mathbb{N}, f(x_0 + n) = \lambda^n f(x_0)$$

En faisant tendre n vers $+\infty$, on obtient $|\lambda| < 1$.

Inversement, supposons $|\lambda| < 1$.

Si $T(f) = \lambda f$ alors

$$f(1) = \lambda f(0)$$
 et $\forall n \in \mathbb{N}, \forall x \in [0, 1], f(x + n) = \lambda^n f(x)$

La fonction f est donc entièrement déterminée par sa restriction continue sur [0,1] vérifiant $f(1)=\lambda f(0)$.

Inversement, si $\varphi : [0,1] \to \mathbb{R}$ est une fonction continue sur [0,1] vérifiant $\varphi(1) = \lambda \varphi(0)$ alors la fonction f donnée par

$$\forall n \in \mathbb{N}, \forall x \in [0, 1[, f(x+n) = \lambda^n \varphi(x)]$$

et continue (on vérifie la continuité en $k\in\mathbb{N}^*$ par continuité à droite et à gauche), converge vers 0 en $+\infty$ et vérifie $T(f)=\lambda f$.

Puisqu'il est possible de construire une fonction non nulle de la sorte, le scalaire $\lambda \in]-1,1[$ est valeur propre et les vecteurs propres associés sont les fonctions non nulles de la forme précédente.

a) $M(a,b) = PD(a,b)P^{-1}$ avec $D(a,b) = \text{diag}((a+b)^2, (a-b)^2, a^2 - b^2, a^2 - b^2)$ et

$$P = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & -1 \\ 1 & 1 & -1 & 0 \end{pmatrix}$$

b) $M(a,b)^n \to 0$ si, et seulement si, |a+b| < 1, |a-b| < 1 et $|a^2-b^2| < 1$. Or $a^2-b^2=(a+b)(a-b)$ donc la dernière condition l'est automatiquement si les deux premières le sont.

L'étude graphique est alors simple.

Exercice 2 : [énoncé] Si 1 et -1 sont les seules valeurs propres alors $f \in GL(E)$ et la relation $f^4 = f^2$

donne $f^2 = \text{Id}$ ce qui fournit un polynôme annulateur scindé à racines simples et permet de conclure. Si 1 et -1 ne sont pas les seules valeurs propres c'est que 0 est aussi valeur propre

permet de conclure. Si 1 et -1 ne sont pas les seules valeurs propres c'est que 0 est aussi valeur propre car les valeurs propres figurent parmi les racines de tout polynôme annulateur. fprésente alors $3 = \dim E$ valeurs propres distincts donc f est diagonalisable.

Exercice 3 : [énoncé]

a) Pour $x \in \mathbb{C}$,

donc

 $\det(xI_n - AB) = \det A \det(xA^{-1} - B) = \det(xA^{-1} - B) \det A = \det(xI_n - BA)$

Comme vu ci-dessus, pour $x \in \mathcal{C}$

assez grand on est sûr que $A + \frac{1}{p}I_n \in GL_n(\mathbb{C})$.

En passant à la limite quand $p \to +\infty$, on obtient $\chi_{AB}(x) = \chi_{BA}(x)$. Ceci valant pour tout $x \in \mathbb{C}$, les polynômes χ_{AB} et χ_{BA} sont égaux.

 $\chi_{AB}(x) = \chi_{BA}(x)$

b) La matrice $A + \frac{1}{p}I_n$ n'est pas inversible seulement si -1/p est valeur propre de A. Puisque la matrice A ne possède qu'un nombre fini de valeurs propres, pour p

 $\chi_{(A+\frac{1}{n}I_n)B}(x) = \chi_{B(A+\frac{1}{n}I_n)}(x)$

Exercice 2 : [énoncé] Si 1 et -1 sont les seules valeurs propres alors $f \in GL(E)$ et la relation $f^4 = f^2$

donne $f^2 = \text{Id}$ ce qui fournit un polynôme annulateur scindé à racines simples et permet de conclure. Si 1 et -1 ne sont pas les seules valeurs propres c'est que 0 est aussi valeur propre

permet de conclure. Si 1 et -1 ne sont pas les seules valeurs propres c'est que 0 est aussi valeur propre car les valeurs propres figurent parmi les racines de tout polynôme annulateur. fprésente alors $3 = \dim E$ valeurs propres distincts donc f est diagonalisable.

Exercice 3 : [énoncé]

a) Pour $x \in \mathbb{C}$,

donc

 $\det(xI_n - AB) = \det A \det(xA^{-1} - B) = \det(xA^{-1} - B) \det A = \det(xI_n - BA)$

Comme vu ci-dessus, pour $x \in \mathcal{C}$

assez grand on est sûr que $A + \frac{1}{p}I_n \in GL_n(\mathbb{C})$.

En passant à la limite quand $p \to +\infty$, on obtient $\chi_{AB}(x) = \chi_{BA}(x)$. Ceci valant pour tout $x \in \mathbb{C}$, les polynômes χ_{AB} et χ_{BA} sont égaux.

 $\chi_{AB}(x) = \chi_{BA}(x)$

b) La matrice $A + \frac{1}{p}I_n$ n'est pas inversible seulement si -1/p est valeur propre de A. Puisque la matrice A ne possède qu'un nombre fini de valeurs propres, pour p

 $\chi_{(A+\frac{1}{n}I_n)B}(x) = \chi_{B(A+\frac{1}{n}I_n)}(x)$