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EXERCICE 79 algèbre

Énoncé exercice 79
Soit a et b deux réels tels que a<b.

1. Soit h une fonction continue et positive de [a, b] dans R.

Démontrer que
∫ b

a

h(x)dx = 0 =⇒ h = 0 .

2. Soit E le R-espace vectoriel des fonctions continues de [a, b] dans R.

On pose : ∀ (f, g) ∈ E2, (f |g) =
∫ b

a

f(x)g(x)dx.

Démontrer que l’on définit ainsi un produit scalaire sur E.

3. Majorer
∫ 1

0

√
xe−xdx en utilisant l’inégalité de Cauchy-Schwarz.

Corrigé exercice 79

1. Soit h une fonction continue et positive de [a, b] dans R telle que
∫ b

a

h(x)dx = 0.

On pose ∀ x ∈ [a, b], F (x) =

∫ x

a

h(t)dt.

h est continue sur [a, b] donc F est dérivable sur [a, b].
De plus, ∀ x ∈ [a, b], F ′(x) = h(x).
Or h est positive sur [a, b] donc F est croissante sur [a, b]. (*)
Or F (a) = 0 et, par hypothèse, F (b) = 0. C’est-à-dire F (a) = F (b). (**)

D’après (*) et (**), F est constante sur [a, b].
Donc ∀ x ∈ [a, b], F ′(x) = 0.
C’est-à-dire, ∀ x ∈ [a, b], h(x) = 0.

2. On pose ∀ (f, g) ∈ E2, (f |g) =
∫ b

a

f(x)g(x)dx.

Par linéarité de l’intégrale, ( | ) est linéaire par rapport à sa première variable.
Par commutativité du produit sur R, ( | ) est symétrique.
On en déduit que ( | ) est une forme bilinéaire symétrique. (*)

Soit f ∈ E. (f |f) =
∫ b

a

f2(x)dx.

Or x 7−→ f2(x) est positive sur [a, b] et a < b donc (f |f) ⩾ 0.
Donc ( | ) est positive. (**)

Soit f ∈ E telle que (f |f) = 0.

Alors
∫ b

a

f2(x)dx = 0.

Or x 7−→ f2(x) est positive et continue sur [a, b] .
Donc, d’après 1., f est nulle sur [a, b] .
Donc ( | ) est définie. (***)

D’après (*), (**) et (***), ( | ) est un produit scalaire sur E.

3. L’inégalité de Cauchy-Schwarz donne
∫ 1

0

√
xe−x dx ⩽

√∫ 1

0

xdx

√∫ 1

0

e−2x dx =

√
1− e−2

2
.
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EXERCICE 80 algèbre

Énoncé exercice 80
Soit E l’espace vectoriel des applications continues et 2π-périodiques de R dans R.

1. Démontrer que (f | g) = 1

2π

∫ 2π

0

f (t) g (t)dt définit un produit scalaire sur E.

2. Soit F le sous-espace vectoriel engendré par f : x 7→ cosx et g : x 7→ cos (2x).

Déterminer le projeté orthogonal sur F de la fonction u : x 7→ sin2 x.

Corrigé exercice 80

1. On pose ∀ (f, g) ∈ E2, (f |g) = 1

2π

∫ 2π

0

f(t)g(t)dt.

Par linéarité de l’intégrale, ( | ) est linéaire par rapport à sa première variable.
Par commutativité du produit sur R, ( | ) est symétrique.
On en déduit que ( | ) est une forme bilinéaire symétrique. (*)

Soit f ∈ E. (f |f) = 1

2π

∫ 2π

0

f2(t)dt.

Or t 7−→ f2(t) est positive sur [0, 2π] et 0 < 2π, donc (f |f) ⩾ 0.
Donc ( | ) est positive. (**)

Soit f ∈ E telle que (f |f) = 0.

Alors
∫ 2π

0

f2(t)dt = 0.

Or t 7−→ f2(t) est positive et continue sur [0, 2π].
Donc, f est nulle sur [0, 2π].
Or f est 2π-périodique donc f = 0.
Donc ( | ) est définie. (***)

D’après (*), (**) et (***), ( | ) est un produit scalaire sur E.

2. On a ∀x ∈ R, sin2 x =
1

2
− 1

2
cos(2x).

x 7−→ −1

2
cos(2x)∈ F .

De plus, si on note h l’application x 7→ 1

2
,

(h|f) = 1

4π

∫ 2π

0

cosxdx = 0 et (h|g) = 1

4π

∫ 2π

0

cos(2x)dx = 0 donc h ∈ F⊥ (car F = Vect(f, g)).

On en déduit que le projeté orthogonal de u sur F est x 7−→ −1

2
cos(2x).

CC BY-NC-SA 3.0 FR Page 119

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.fr


Banque épreuve orale de mathématiques session 2025, CCINP, filière MP et MPI Mise à jour : 11/09/2024

EXERCICE 81 algèbre

Énoncé exercice 81
On définit dans M2 (R)×M2 (R) l’application φ par : φ (A,A′) = tr

(
ATA′

)
, où tr

(
ATA′

)
désigne la trace du

produit de la matrice AT par la matrice A′.
On admet que φ est un produit scalaire sur M2 (R) .

On note F =

{(
a b
−b a

)
, (a, b) ∈ R2

}
.

1. Démontrer que F est un sous-espace vectoriel de M2 (R).
2. Déterminer une base de F⊥.

3. Déterminer le projeté orthogonal de J =

(
1 1
1 1

)
sur F⊥ .

4. Calculer la distance de J à F .

Corrigé exercice 81

1. On a immédiatement F = Vect(I2,K) avec K =

(
0 1
−1 0

)
.

On peut donc affirmer que F est un sous-espace vectoriel de M2(R).
F = Vect(I2,K) donc (I2,K) est une famille génératrice de F .
De plus, I2 et K sont non colinéaires donc la famille (I2,K) est libre.
On en déduit que (I2,K) est une base de F .

2. Soit M =

(
a b
c d

)
∈ M2 (R).

Comme (I2,K) est une base de F ,
M ∈ F⊥ ⇐⇒ φ(M, I2) = 0 et φ(M,K) = 0.
C’est-à-dire, M ∈ F⊥ ⇐⇒ a+ d = 0 et b− c = 0.
Ou encore, M ∈ F⊥ ⇐⇒ d = −a et c = b.

On en déduit que F⊥ = Vect (A,B) avec A =

(
1 0
0 −1

)
et B =

(
0 1
1 0

)
.

(A,B) est une famille libre et génératrice de F⊥ donc (A,B) est une base de F⊥.

3. On peut écrire J = I2 +B avec I2 ∈ F et B ∈ F⊥.

Donc le projeté orthogonal de J sur F⊥ est B =

(
0 1
1 0

)
.

4. On note d(J,F) la distance de J à F .
D’après le cours, d(J,F) = ||J − pF (J)|| où pF (J) désigne le projeté orthogonal de J sur F .
On peut écrire à nouveau que J = I2 +B avec I2 ∈ F et B ∈ F⊥.
Donc pF (J) = I2.
On en déduit que d(J,F) = ||J − pF (J)|| = ||J − I2|| = ||B|| =

√
2.
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Corrections

Exercice 1 : [énoncé]

a) Pour P,Q ∈ E, la fonction f : t 7→ P (t)Q(t) e−t est définie et continue par
morceaux sur [0 ; +∞[ et intégrable car t2f(t) −→

t→+∞
0.

b) L’application ϕ est clairement bilinéaire symétrique et positive.
Si ϕ(P, P ) = 0 alors par intégration d’une fonction continue positive on
obtient

∀t ∈ [0 ; +∞[, P (t)2 e−t = 0

et donc P admet une infinité de racines (les éléments de [0 ; +∞[), c’est donc
le polynôme nul.

c) Posons In =
∫ +∞

0 tn e−t dt de sorte que ϕ(Xp, Xq) = Ip+q.
Par intégration par parties impropre justifiée par la convergence du crochet∫ +∞

0
tn e−t dt =

[
−tn e−t

]+∞
0 + n

∫ +∞

0
tn−1 e−t dt

Ainsi, In = nIn−1. Sachant I0 = 1, on conclut In = n! et

ϕ(Xp, Xq) = (p+ q)!

d) Notons que la famille (1, X,X2) est libre et qu’il est donc licite de
l’orthonormaliser par le procédé de Schmidt. On pose P0 = 1.
On cherche P1 = X + λP0 avec (P0 | P1) = 0 ce qui donne 1 + λ = 0 et donc
P1 = X − 1.
On cherche P2 = X2 + λP0 + µP1 avec (P0 | P2) = 0 et (P1 | P2) = 0 ce qui
donne 2 + λ = 0 et 4 + µ = 0 donc P2 = X2 − 4X + 2.
La famille orthonormalisée cherchée et alors (Q0, Q1, Q2) avec

Q0 = 1, Q1 = X − 1 et Q2 = 1
2
(
X2 − 4X + 2

)

Exercice 2 : [énoncé]
Il est immédiat que ϕ est une forme bilinéaire symétrique sur E.
On a

ϕ(x, x) = ‖x‖2 + k 〈x, a〉2

En particulier
ϕ(a, a) = ‖a‖2 + k ‖a‖4 = (1 + k)

Pour que la forme bilinéaire symétrique ϕ soit définie positive, il est nécessaire
que 1 + k > 0.
Inversement, supposons 1 + k > 0.
Si k ≥ 0 alors ϕ(x, x) ≥ ‖x‖2 et donc

∀x ∈ E \ {0E} , ϕ(x, x) > 0

Si k ∈ ]−1 ; 0[, k = −α avec α ∈ ]0 ; 1[ et

ϕ(x, x) = ‖x‖2 − α 〈x, a〉2

Par l’inégalité de Cauchy-Schwarz

〈x, a〉2 ≤ ‖x‖2 ‖a‖2 = ‖x‖2

donc
ϕ(x, x) ≥ ‖x‖2 − α ‖x‖2 = (1− α) ‖x‖2

de sorte que
∀x ∈ E \ {0E} , ϕ(x, x) > 0

Ainsi ϕ est une forme bilinéaire symétrique définie positive donc un produit
scalaire.
Finalement, ϕ est un produit scalaire si, et seulement si, 1 + k > 0.

Exercice 3 : [énoncé]
L’application ϕ est bien définie de E × E → R et clairement bilinéaire et
symétrique.
Soit f ∈ E.

ϕ(f, f) =
∫ 1

0
f ′(t)2 dt+ 2f(0)f(1)

Par l’inégalité de Cauchy-Schwarz(∫ 1

0
f ′(t) dt

)2

≤
∫ 1

0
f ′(t)2 dt

et donc ∫ 1

0
f ′(t)2 dt ≥ (f(1)− f(0))2

puis
ϕ(f, f) ≥ f(1)2 + f(0)2 ≥ 0

Au surplus, si ϕ(f, f) = 0 alors f(0) = f(1) = 0, mais aussi
∫ 1

0 f
′(t)2 dt = 0. La

fonction f est donc constante égale à 0.
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et l’on peut conclure.
Récurrence établie.

Exercice 5 : [énoncé]

(a) Par intégration par parties∫ 1

0
F(x)g(x) dx = F(1)G(1) −

∫ 1

0
f (x)G(x) dx

ce qui se réécrit ∫ 1

0
F(x)g(x) dx =

∫ 1

0
f (x) (G(1) −G(x)) dx

Ainsi pour

v∗(g) : x 7→ G(1) −G(x) =

∫ 1

x
g(t) dt

on vérifie que v∗ est un endomorphisme de E vérifiant

∀ f , g ∈ E, 〈v( f ), g〉 = 〈 f , v∗(g)〉

(b) Soit λ ∈ R et f ∈ E vérifiant (v∗ ◦ v)( f ) = λ f .
La fonction f est nécessairement dérivable et vérifie{

λ f (1) = 0
v( f )(x) = −λ f ′(x)

La fonction f est donc nécessairement deux fois dérivable et vérifie
λ f (1) = 0
λ f ′(0) = 0

f (x) = −λ f ′′(x)

Si λ = 0 alors f = 0 et donc λ n’est pas valeur propre.
Si λ > 0 alors en écrivant λ = 1/

√
ω, l’équation différentielle λy′′ + y = 0 donne la

solution générale
y(t) = α cos(ωt) + β sin(ωt)

La condition f ′(0) = 0 donne β = 0 et la condition f (1) = 0 donne α cos(ω) = 0.
Si ω < π/2 + πN alors f = 0 et λ = 1/

√
ω n’est pas valeur propre.

En revanche, si ω ∈ π/2 + πN, alors par la reprise des calculs précédents donne
λ = 1/

√
ω valeur propre associé au vecteur propre associé f (x) = cos(ωx).

Si λ < 0 alors la résolution de l’équation différentielle linéaire à coefficients
constants avec les conditions proposées donne f = 0 et donc λ n’est pas valeur
propre.

Exercice 6 : [énoncé]
Puisque F ⊂ F̄, on a déjà

F̄⊥ ⊂ F⊥

Soit a ∈ F⊥.
Pour tout x ∈ F̄, il existe une suite (xn) d’éléments de F telle que xn → x. Puisque

∀n ∈ N, 〈xn, a〉 = 0

à la limite (le produit scalaire étant continue)

〈x, a〉 = 0

et donc a ∈ F̄⊥.
Finalement, par double inclusion F⊥ = F̄⊥.

Exercice 7 : [énoncé]
Puisque la base f est orthonormale, on a

A =

n∑
j=1

∥∥∥u(e j)
∥∥∥2

et donc

A =

n∑
i=1

n∑
j=1

(
ei |u(e j)

)2

Notons M = (mi, j) la matrice de u dans la base orthonormale e. On a

mi, j =
(
ei |u(e j)

)
et donc

A = tr
(

t MM
)

Si e′ = (e′1, . . . , e
′
n) est une autre base orthonormale de E et si M′ est la matrice de u dans

e′, on peut écrire
M′ = tPMP avec P ∈ On(R)

et alors
tr(t M′M′) = tr(tPt MMP) = tr(t MMPtP) = tr(t MM)

Finalement, la quantité A ne dépend ni de choix de f ni de celui de e.
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Corrections

Exercice 1 : [énoncé]
Raisonnons par récurrence sur n ≥ 2.
Pour n = 2 la propriété est immédiate car aucun vecteur ne peut être nul.
Supposons la propriété établie au rang n ≥ 2.
Soit (x1, . . . , xn+1) une famille de vecteurs vérifiant

∀1 ≤ i , j ≤ n + 1,
(
xi | x j

)
< 0

Par projection orthogonale sur le sous-espace vectoriel de dimension finie D = Vect xn+1,
on peut écrire pour tout i ∈ {1, . . . , n}

xi = yi + λixn+1

avec yi un vecteur orthogonal à xn+1 et λi < 0 puisque (xi | xn+1) < 0.
On remarque alors (

xi | x j

)
=
(
yi |y j

)
+ λiλ j ‖xn+1‖

2

et on en déduit
∀1 ≤ i , j ≤ n,

(
yi |y j

)
< 0

Par hypothèse de récurrence, on peut affirmer que la famille (y2, . . . , yn) est libre et
puisque ses vecteurs sont orthogonaux au vecteur xn+1 non nul, on peut aussi dire que la
famille (y2, . . . , yn, xn+1) est libre. Enfin, on en déduit que la famille (x2, . . . , xn, xn+1) car
cette dernière engendre le même espace que la précédente et est formée du même nombre
de vecteurs.
Par permutation des indices, ce qui précède vaut pour toute sous-famille formée de n
vecteurs de la famille initiale (x1, . . . , xn, xn+1).
Récurrence établie.

Exercice 2 : [énoncé]
Par récurrence sur n ∈ N∗

Pour n = 1 : Soit u un vecteur unitaire de E. On peut écrire x1 = λ1.u, x2 = λ2.u, x3 = λ3.u
On a alors

(x1 | x2) = λ1λ2, (x2 | x3) = λ2λ3, (x3 | x1) = λ3λ1

Ces trois quantités ne peuvent être négatives car

λ1λ2λ2λ3λ3λ1 = (λ1λ2λ3)2 ≥ 0

Supposons la propriété établie au rang (n − 1) ∈ N∗ :
Par l’absurde, supposons que la configuration soit possible :

Nécessairement xn+2 , 0.
Posons F = Vect(xn+2)⊥. On a dim F = n − 1.

∀1 ≤ i ≤ n + 1, xi = yi + λi.xn+2

avec yi ∈ F et λi ∈ R.
Comme (xi | xn+2) < 0 on a λi < 0.

∀1 ≤ i , j ≤ n + 1,
(
xi | x j

)
=
(
yi |y j

)
+ λiλ j ‖xn+2‖

2 < 0

donc
(
yi |y j

)
< 0.

On peut appliquer l’hypothèse de récurrence à la famille (y1, . . . , yn+1) formée de vecteurs
qui évoluent dans F. Récurrence établie.

Exercice 3 : [énoncé]
Cas n = 1.
Supposons disposer de vecteurs x1, x2, x3 tels que

∀i , j,
(
xi | x j

)
< 0

Puisque x1 , 0, (x1) est une base de E.
Cela permet d’écrire x2 = λx1 et x3 = µx1.
(x2 | x1) < 0 et (x3 | x1) < 0 donne λ < 0 et µ < 0 mais alors (x2 | x3) = λµ ‖x1‖

2 > 0 !
Cas n = 2.
Supposons disposer de vecteurs x1, ..., x4 tels que

∀i , j,
(
xi | x j

)
< 0

x1 étant non nul on peut écrire

∀i ≥ 2, xi = λix1 + yi

avec yi ∈ {x1}
⊥ et λi < 0.

On
∀i , j ≥ 2,

(
xi | x j

)
= λiλ j +

(
yi |y j

)
< 0

donc
(
yi |y j

)
< 0.

y2, y3, y4 se positionnant sur la droite {x1}
⊥, l’étude du cas n = 1 permet de conclure.

Cas général.
Par récurrence sur n ≥ 1.
Pour n = 1 : ci-dessus
Supposons la propriété établie au rang n ≥ 1.
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