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EXERCICE 63 algébre

Enoncé exercice 63

Soit E un espace euclidien muni d’un produit scalaire noté (| ).

On pose Vz € E, ||z|| = v/(z|x).

Pour tout endomorphisme u de E, on note u* ’adjoint de u.

1. Un endomorphisme v de E vérifiant Va € E, (u(z)|z) = 0 est-il nécessairement ’endomorphisme nul ?

2. Soit u € L(E).
Prouver que les trois assertions suivantes sont équivalentes :
i. uou* =u*ou.
it W(a,y) € B, (u(@)|u(y)) = (u* (@)[u* (3))-
ili. Vo e E, ||u(z)|| = |Ju*(x)]].

Corrigé exercice 63

1. On se place sur E = R? muni du produit scalaire canonique.

. . . . -1
On considére u la rotation d’angle 5 dont la matrice dans la base canonique de R? est A = (? 0 >

On a bien Vz € E,(u(x)|x) = 0 mais u n’est pas 'endomorphisme nul.

2. Prouvons que i. <= ii.
Procédons par double implication.

Supposons que u o u* = u* o u.

Prouvons que Y(z, ) € B2, (u(x) u(y)) = (u* () Ju* ().
Soit (z,y) € E.

Par définition de adjoint, (u(z)|u(y)) = (z|u* o u(y)).

Or, par hypothése, u o u* = u* o w.

Done (u(z), u(y)) = (z]u o u*(y).

Or, par définition de 'adjoint, (z|u o u*(y)) = (u*(z)|u*(y)).
Done (u(@)]u(y)) = (u* (@)u (y)).

Supposons que V(z,y) € E?, (u(x)|u(y)) = (u*(z)|u*(y)).

Prouvons que u o u* = u* o u.

Soit x € E.

Prouvons que u o u*(z) — u* ou(x) € E+.

Soit y € F.

Par bilinéarité du produit scalaire, (u o u*(z) — u* o u(z)|y) = (v o u*(x)|y) — (u* o u(z)|y).
Or, par définition de 'adjoint, (u o u*(z)|y) = (v*(z)|u*(y)) et (v* o u(z)|y) = (u(z)|uly)).
Done (w0 u*(z) — u* o u(@)ly) = (u*(@)[u*(3)) — (u(z) u(y)).

Or, par hypothese, (u*(2)]u* (1)) = (u(2)]u(y)).

Done (w0 u*(z) — u* o u(z)ly) = (u(z) u(y)) — (u(z) u(y)) = 0.

Donc u o u*(x) — u* ou(x) € E+.
Or B+ = {0}.

Donc u o u*(z) — u* ou(z) = 0.

Prouvons que ii. < iii.
Procédons par double implication.

On suppose que V(z,y) € E?, (u(@)|u(y)) = (u*(2)|u*(y)).
Donc, en prenant y = z, on obtient : Vo € E, ||u(x)||? = ||u*(z)
Or,Vz € E, ||u(z)| = 0 et |[u*(z)|| > 0.

Donc Vz € E, ||u(z)|| = ||u*(z)]|.

On suppose que Vz € E, ||u(z)|] = [|u*(2)]].
Prouvons que V(z,y) € E?, (u(z)lu(y)) = (u*(z)|u*(y))-
Soit (z,y) € E%
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D’apreés une identité de polarisation, (u(z)|u(y)) = % (Hu(m) +u)|? — ||Ju(@)|]? - Hu(y)Hz)

Or, u est linéaire donc ||u(z) + u(y)||* = ||ju(z + y)||?

De plus par hypothese, ||u(z +y)|| = [[u*(z + y)I|, [[u(z)]| = [[u*(@)]] et [lu(y)]] = [[u*(y)]]-

Donc (u(x)lu(y)) = 5 (|lu*(z + 9)|[> = [|u* @) = [Ju*)]]*)-

Or u* est linéaire donc ||u*(xz + y)|| = ||u*(z) + u*(y)|]-

Donc (u(z)|u(y)) = 5 ([u*(z) + u*W)[|* = [Ju*(@)[]* = |[u*(y)]]?)-

Or, d’aprés une identité de polarisation, (u*(z)|u*(y)) = 3 (||u*(z) + w*(¥))|[> — |[u*(@)]|* — [|u*(y)|]?).
Done (u(z)[u(y)) = (u° (2)|u*(3)).
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EXERCICE 66 algébre

Enoncé exercice 66

1. Soit A € S, (R).

Prouver que A € S;F (R) <= sp(A) C [0, +o0.
2. Prouver que V¥ A € S, (R), A% € S} (R).
3. Prouver que VA € S, (R), VB € S;7 (R), AB=BA = A’B € S;" (R).
4. Soit A € St (R).

Prouver qu’il existe B € S (R) telle que A = B2

Corrigé exercice 66

On introduit, sur M,, 1 (R), la norme euclidienne, notée || ||, associée au produit scalaire canonique, définie par :
VX € Mui (R), || X|| = VXTX.

1. Soit A € S,, (R). Prouvons que A € S;f (R) <= sp(4) C [0, +o0].
Raisonnons par double implication.

Supposons que A € S;F (R).
Prouvons que sp(4) C [0, +o0].
Soit A € sp(4).

3X € My (R)\ {0} / AX = AX.
Alors XTAX = XTAX = \||X]|2.
Or, A€ S} (R) donc XTAX > 0.
Donc || X|* > 0.

Or, X # 0 donc || X2 > 0.

Donc A > 0.

Supposons que sp(A4) C [0, +oo].
Prouvons que A € S (R).
A € S, (R) donc, d’aprés le théoréme spectral, 3P € O(n) / A = PDPT ot D = diag (A1, X2, ..., \n).
Soit X € Mn,l (R)
XTAX = XTPDPTX = (PTX)TD(PTX).
Notons 41,42, ..., Yn les composantes de la matrice colonne Y = PTX.

W

Y2 "
Ainsi Y = | | et donc XTAX =YTDY =Y Ay?. (1)

i=1

Yn
Or, A1, Ag,...,\,, sont les valeurs propres de A donc, par hypothese, Vi € [1,n], A; = 0.
Donc Vi € [1,n], A\jy? = 0.
Donc, d’aprés (1), XTAX > 0.

2. Soit A € S, (R).

Prouvons que A% € S (R).

(A2)T = AT AT,
Or, A€ S, (R) donc AT = A. Donc (AQ)T = A% Donc A% € S, (R).

Soit X € My 1 (R).
XTA2X = XTATAX = (AX)" (AX) = ||AX]]2 > 0.
Donc 4% € S;F (R).
3. soit A € S, (R) et soit B € S, (R).
On suppose que AB = BA.
Prouvons que A%2B € S;F (R).

Remarque : par hypothése, A et B commutent donc A? et B commutent.
En effet : A2B = A(AB) = A(BA) = (AB)A = (BA)A = BA?.
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(A2B)T = BT (42)" = BT (AT)".

Or, A€ S, (R) et B€ S (R)donc AT = A et BT = B.
Donc (A2B)T = BA2.

Or, d’aprés la remarque, A2 et B commutent.

Donc (AzB)T = A’B.

Donc A%B € S, (R).

Soit X € Mn,l (R)
A et B commutent donc X7 (A?B) X = XTABAX.
Or, A est symétrique donc XTABAX = (AX)" B(AX).
On pose Y = AX.
Y € My (R) et B e S (R) done (AX)" B(AX)=YTBY >0.
Donc XTA2BX > 0.
Donc A?B € S (R).
4. Soit A € 5+ (R).
A € S, (R) donc, d’apreés le théoréme spectral et 1. :
JP € O(n) / A= PDPT ou D = diag (A1, A2, ..., \) avec Vi € [1,n], \; > 0.
On pose A = diag (vVA1, VA2, ..., VAn).
Alors A = PA?2PT = PAPTPAPT car PT = P!,
Cest-a-dire, A = (PAPT)Z.
On pose alors B = PAPT,
On a A= B2
De plus, BT = (PT)" ATPT = PAPT = B donc B € S, (R).
De plus, B est semblable & A donc sp (B) = {v/A1, VA2, ..., v/ A, } et donc sp (B) C [0, +o0].
Donc B € S (R).
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EXERCICE 78 algébre

Enoncé exercice 78

Soit E un espace euclidien de dimension n et u un endomorphisme de E.
On note (z|y) le produit scalaire de z et de y et ||.|| la norme euclidienne associée.

1. Soit v un endomorphisme de E, tel que : Vz € E, ||u(z)|| = ||=]/.
(a) Démontrer que : ¥(z,y) € E? (u(z)u(y)) = (z|y).
(b) Démontrer que u est bijectif.

2. On note O(F) I'ensemble des isométries vectorielles de E.
Clest -a-dire O(F) = {u € L(E) /Vz € E,||lu(z)|| = ||z||}.

Démontrer que O(F) , muni de la loi o , est un groupe.

3. Soit u € L(E). Soit e = (ey, e, ..., €,) une base orthonormée de E.
Prouver que : u € O(E) <= (u(e1), u(esz), ...,u(ey,)) est une base orthonormée de E.

Corrigé exercice 78
1. Soit u € L(E) tel que V(z,y) € E?, ||u(x)|| = ||z]|.

(a) Soit (x,y) € E2.
On a, d'une part, [[u( +y)|° = l|e +yl> = [l2]° + 2 | y) + [yl*. (%)
D’autre part,
(e + I = lu@) + u(®) > = fu@)] +2(u() |
On en déduit, d’aprés (*) et (**), que (u(z) | u(y)) = (z | ).
(b) Soit x € Keru.
Par hypothese, 0 = [lu(z)|* = ||z|* .
Donc z = 0.
Donc Keru = {0g}.
Donc u est injectif.
Puisque F est de dimension finie, on peut conclure que I’endomorphisme u est bijectif.

(y( )+ lu()* = el +2(ulz) | uly) + Iyl (%)

2. Montrons que 'ensemble O(F) des isométries vectorielles est un sous-groupe du groupe linéaire (GL(E), o).

On a O(F) C GL(FE) en vertu de ce qui précede.
On a aussi, évidemment, Idg € O(E). Donc O(FE) # 0.
Soit (u,v) € (O(E))>.
Va € E, [[ucv ™ (z)| = |[u(v™ ()| = |[v ™ (z)|| car u € O(E).
Et |[v ()| = |[o(v™ (2))]| = [|z]| car v € O(E).
Donc Vz € E,||uov™!(z)| = ||
On en déduit que uov~t € O(E).
3. Soit u € L(E). Soit e = (ey, e, ..., €,) une base orthonormée de E.
Supposons que u € O(E).

Soit (4, ) € ([1,n])>.
u € O(E) donc, d’aprés 1.(a), (u(e;)|u(e;)) = (eile;).

Or e est une base orthonormée de E donc (e;le;) = 5{ ol 517 désigne le symbole de Kronecker.

On en déduit que V(i,7) € ([[1,n]])2,(u(ei)|u(ej)) =

C’est-a-dire (u(ey), u(ez), ...,u(ey)) est une famille orthonormée de FE.
Donc, c’est une famille libre a n éléments de F avec dim F = n.
Donc (u(e1),u(ez), ..., u(e,)) est une base orthonormée de FE.

Réciproquement, supposons que (u(e1), u(ez), ..., u(e,)) est une base orthonormée de E.
Soit z € E.

n
Comme e est une base orthonormée de E, x = E T;€4.
i=1
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n n n n
el = | D miesl Y wje; | =D mia (eiley).
i=1 j=1

i=1 j=1
Or e est une base orthonormée de E donc ||z||*> = Z z? . (%)
De méme, par linéarité de u, ||u(z)||*> = Z u(e;) Zx] u(e;)) Z Zmzx] u(e;)|u(e;))-
=1 =1 j=1
Or (u(e1),u(ea), ..., u(e,)) est une base orthonormée de E, donc ||u(z)||* = Zm

D’apres (*) et (**), Va € E, [[u(z)]] = [|=].
Donc u € O(E).
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1. (a) La matrice 4 est symétrigue réelle done diagonalisable dans une base orthonormée de vecteurs propres.
(b) Om obtient det{Al; — A) = A*(A —3).
Ez(A) =Vect(l,—1,1) et Ey(A):z—y+z=10.
Donc A est diagonalisable car dim E3(A) + dim Ex(A) = 3.
(c) rgA = 1 done dim Ey(A) = 2.
On en déduit que 0 est valeur propre au moins double de la matrice A.
Puisque trd = 3 et que trA est la somme des valeurs propres complexes de A comptées avec leur
multiplicité, la matrice A admet une troisiéme valeur propre qui vaut 3 et qui est nécessairement simple.

Comme dans la question précédente, on peut conclure que A est diagonalisable car
dim E;(A) + dim Ey(A) = 3.

(d) Omn obtient A% = 34 donc A est diagonalisable car cette matrice annule le polynéme X2 — 3X qui est
scindé A racines simples.

2. On note € = (. ¥, ) la base canonique de R,
On note (| ) le produit scalaire canonique sur B?,
Soit f I'endomorphisme canoniquement associé & A.
A est symétrique réelle et e est une base orthonormée, done f est un endomorphisme symétrique et, d’aprés
le théoréme spectral, f est diagonalisable dans une base orthonormée de vecteurs propres.
On sait également que les sous-espaces propres sont orthogonaux done il suffit de trouver une base
orthonormée de chaque sous-espace propre pour construire une base orthonormée de vecteurs propres.
Es(f)=Vect(l.—-1.1) et Ey(f):z—y+2z=0.

Donc o = ﬁ{f— 7+ k) est une base orthonormée de Ex(f).

i+ j' et i — :i' — 2k sont deux vecteurs orthogonaux de Ey(f).

. 1 - 1 /-~ = ~

On les normalise et on = —=(i+j) et = — (i = E}:}_
pose 7= —5 7) v

Alors (¥, 1w) une base orthonormée de Eyl f).

On en déduit que (i, ¥, o) est une base orthonormée de vecteurs propres de f.

—

1. {a) Les vecteurs colonnes de la matrice A sont deux a deux orthogonaux et de norme 1, donc A € O(3).
Or (i, j, k) est une base orthonormée de E, done f € O(E).

T
(b) Pour déterminer les vecteurs invariants, on résout le systéme AX = X on X = (y) .
z
—r4+y+Bz=0 B
AX =X = (A-I;1)X =0e={ a—y—Bz=0 .,=..{ f;,{%‘:;‘fjgr__ﬂzz_ﬂ
—v6x + By — 2z = ' v
Done AX = X = { T=¥
Ea4—La++6L, z2=0

Done 'ensemble des vecteurs invariants par [ est la droite A = Vect(i + j).

2. Comme dim A = 1, d’aprés les résultats sur la réduction d'une isométrie vectorielle en dimension 3. f est
nécessalrement une rotation.
On oriente I'axe A de cette rotation par le vecteur i + j.

Déterminons 'angle # de la rotation f.

Comme la trace est invariante par changement de base, 1 + 2cos# = trA.
. . . i 1

On en déduit que cosé = 5. (1)

Il reste donc & déterminer le signe de sin é.

: i+ ] o
On pose w = ——— = (i + j).

_ i+l — V2

Un a done A = Vectw avec w unitaire.

Si u est un vecteur unitaire orthogonal & A, alors sin# = Det(u, f(u). w). Prenons par exemple u = k.

(:.'ln a flu) = I:-‘JLE., —%. %}
On caleule alors le déterminant

[5

=55
L-..:||f$|

0
Det({w, f(u).w)=|p —
1

[

c'est-d-dire sinf = X3, On en déduit que # = ; mod(2w).

b

Soit A € O, (R) dont tous les coeflicients sont positifs ou nuls.
Montrons que chague colonne de A ne comporte qu'an plus un coefficient non nul.
Par 'absurde, supposons que la j-éme colonne de A posséde an moins deux

coeflicients non nuls situés en k-itme et en £-iéme ligne. Puisque les colonnes de A
sont orthogonales, on a pour tout j' # j

i
Z a; a5 =1

Sachant que tous les coefficients sont positifs, cette équation éguivaut a

et an en tire
ag i = gy =1

Ainsi les n — 1 colonnes correspondant aux indices autres que j appartiennent a
I'espace formé des colonnes dont les k-ieme et f-iéme coefficients sont nuls. Or ces
n — 1 colonnes sont indépendantes et cet espace est de dimension n — 2. Clest
absurde.

Puisque les colonnes de A sont de norme 1 et que ses coefficients sont positifs, sur
chagque colonne figure un 1 et n — 1 coefficients nuls.

Le méme raisonnement peut étre adapté anx lignes de A pour affirmer que
chacune d'elles contient un coefficient 1 et n — 1 coefficients nuls.

[nversement, on vérifie aisément gqu'une telle matrice est une matrice orthogonale
a coefficients positifs.

En fait. les matrices considérés sont les matrices de permutation, il y en a n!

(=) S8i V est stable i‘.l‘L'HIl' falors f(V) C V et puisque f est un antomorphisme
fiV)=V.Soient r e VietyeV

(flx) ly) = (x| F 7 w)) =0

car f~'(y) € V donc f(x) € V* puis V' stable par f.
(+<) Si V- stable par f alors V = VL aussi

Soit A valeur propre de f. Pour z vecteur propre, on a f{r) = Ar avec
| flx)|| = ||z| d'ott A = £1. Une diagonalisation de f est alors réalisée avec des 1
et des —1 sur la diagonale, ¢'est une symétrie.

—

On a
AT = A » (A'A) = APt 4

pis
AT=A(PA) = A(*A)" = At (AtA) = A% A= A°

Ainsi X7 — X = XY X? - 1) annule A
Ce polynome n'est pas i racines simples, mais en montrant

ker A* = ker A

on pourra affirmer que le polynéme X (X — 1) annule aussi A et, ce dernier étant
scindé 4 racines simples sur C, cela sera décisif pour conclure.
Evidemment ker A © ker A*. Inversement, soit X € ker A*. On a

ATAAX = A'X =0

done
P AAX|" = X" A4 AAX = 0

et par conséquent *AAX = (. Alors
JAX|? =*X'AAX =0

et done AX = 0. Ainsi ker A* C ker A puis 1'égalité.

{a) Par intégration par partics

1 1
f Fix)gix)dx = F(1)G(1) - J- Filxir{x)dx
0 i

ce qui se réécrit

j: Filxgix)de = LI FONGL) = Gl d
Ainsi pour
vigl: x = G - Glx) = J-I glr)dr
on vérifie que v* est un endomorphisme de E vériﬁm:t
if.g € Evif)g) = (fvigh

(b) Soit d € R et f € E vérifiam (v* e v){f) = Af.
La fonction [ est nécessairement dérivable et vérifie

Afi1y=0
vifix) = —Af"(x)

La fonction [ est donc nécessairement deux fois dérivable et vénfie

Afily=0
Afiiy=0
Jix) = =4f"(x)

Si 4 = 0alors f =0 et donc A n'est pas valeur propre.
Si A > 0 alors en écrivant A = 1/ yw, I'équation différentielle A4y"” + v = 0 donne la
solution générale

W) = @ coswi) + B sinwi)

La condition f*(0) = 0 donne & = 0 et la condition f(1) = 0 donne e cosiw) = 0.
Siwém2+aM alors f=0etd= 1/+wn’est pas valeur propre.

En revanche, si w € /2 + al, alors par la reprise des calculs précédents donne
A = 1/ yw valeur propre associé au vecteur propre associé f{x) = cos{ewx).

Si 4 < 0 alors la résolution de I"équation différentielle linéaire i coefficients
constanis avec les conditions proposées donne | = 0 et donc .4 n’est pas valeur
propre.




