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EXERCICE 63 algèbre

Énoncé exercice 63
Soit E un espace euclidien muni d’un produit scalaire noté ( | ).
On pose ∀x ∈ E, ||x|| =

√
(x|x).

Pour tout endomorphisme u de E, on note u∗ l’adjoint de u.
1. Un endomorphisme u de E vérifiant ∀x ∈ E, (u(x)|x) = 0 est-il nécessairement l’endomorphisme nul ?

2. Soit u ∈ L(E).
Prouver que les trois assertions suivantes sont équivalentes :
i. u ◦ u∗ = u∗ ◦ u.
ii. ∀(x, y) ∈ E2, (u(x)|u(y)) = (u∗(x)|u∗(y)).
iii. ∀x ∈ E, ||u(x)|| = ||u∗(x)||.

Corrigé exercice 63
1. On se place sur E = R2 muni du produit scalaire canonique.

On considère u la rotation d’angle π
2 dont la matrice dans la base canonique de R2 est A =

(
0 −1
1 0

)
.

On a bien ∀x ∈ E,(u(x)|x) = 0 mais u n’est pas l’endomorphisme nul.
2. Prouvons que i. ⇐⇒ ii.

Procédons par double implication.

Supposons que u ◦ u∗ = u∗ ◦ u.
Prouvons que ∀(x, y) ∈ E2, (u(x)|u(y)) = (u∗(x)|u∗(y)).
Soit (x, y) ∈ E2.
Par définition de l’adjoint, (u(x)|u(y)) = (x|u∗ ◦ u(y)).
Or, par hypothèse, u ◦ u∗ = u∗ ◦ u.
Donc (u(x), u(y)) = (x|u ◦ u∗(y)).
Or, par définition de l’adjoint, (x|u ◦ u∗(y)) = (u∗(x)|u∗(y)).
Donc (u(x)|u(y)) = (u∗(x)|u∗(y)).

Supposons que ∀(x, y) ∈ E2, (u(x)|u(y)) = (u∗(x)|u∗(y)).
Prouvons que u ◦ u∗ = u∗ ◦ u.
Soit x ∈ E.
Prouvons que u ◦ u∗(x)− u∗ ◦ u(x) ∈ E⊥.
Soit y ∈ E.
Par bilinéarité du produit scalaire, (u ◦ u∗(x)− u∗ ◦ u(x)|y) = (u ◦ u∗(x)|y)− (u∗ ◦ u(x)|y).
Or, par définition de l’adjoint, (u ◦ u∗(x)|y) = (u∗(x)|u∗(y)) et (u∗ ◦ u(x)|y) = (u(x)|u(y)).
Donc (u ◦ u∗(x)− u∗ ◦ u(x)|y) = (u∗(x)|u∗(y))− (u(x)|u(y)).
Or, par hypothèse, (u∗(x)|u∗(y)) = (u(x)|u(y)).
Donc (u ◦ u∗(x)− u∗ ◦ u(x)|y) = (u(x)|u(y))− (u(x)|u(y)) = 0.
Donc u ◦ u∗(x)− u∗ ◦ u(x) ∈ E⊥.
Or E⊥ = {0}.
Donc u ◦ u∗(x)− u∗ ◦ u(x) = 0.

Prouvons que ii. ⇐⇒ iii.
Procédons par double implication.

On suppose que ∀(x, y) ∈ E2, (u(x)|u(y)) = (u∗(x)|u∗(y)).
Donc, en prenant y = x, on obtient : ∀x ∈ E, ||u(x)||2 = ||u∗(x)||2.
Or, ∀x ∈ E, ||u(x)| ⩾ 0 et ||u∗(x)|| ⩾ 0.
Donc ∀x ∈ E, ||u(x)|| = ||u∗(x)||.

On suppose que ∀x ∈ E, ||u(x)|| = ||u∗(x)||.
Prouvons que ∀(x, y) ∈ E2, (u(x)|u(y)) = (u∗(x)|u∗(y)).
Soit (x, y) ∈ E2.
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D’après une identité de polarisation, (u(x)|u(y)) = 1
2

(
||u(x) + u(y)||2 − ||u(x)||2 − ||u(y)||2

)
.

Or, u est linéaire donc ||u(x) + u(y)||2 = ||u(x+ y)||2.
De plus par hypothèse, ||u(x+ y)|| = ||u∗(x+ y)||, ||u(x)|| = ||u∗(x)|| et ||u(y)|| = ||u∗(y)||.
Donc (u(x)|u(y)) = 1

2

(
||u∗(x+ y)||2 − ||u∗(x)||2 − ||u∗(y)||2

)
.

Or u∗ est linéaire donc ||u∗(x+ y)|| = ||u∗(x) + u∗(y)||.
Donc (u(x)|u(y)) = 1

2

(
||u∗(x) + u∗(y))||2 − ||u∗(x)||2 − ||u∗(y)||2

)
.

Or, d’après une identité de polarisation, (u∗(x)|u∗(y)) = 1
2

(
||u∗(x) + u∗(y))||2 − ||u∗(x)||2 − ||u∗(y)||2

)
.

Donc (u(x)|u(y)) = (u∗(x)|u∗(y)).
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EXERCICE 66 algèbre

Énoncé exercice 66
1. Soit A ∈ Sn (R).

Prouver que A ∈ S+
n (R) ⇐⇒ sp(A) ⊂ [0,+∞[.

2. Prouver que ∀A ∈ Sn (R), A2 ∈ S+
n (R).

3. Prouver que ∀A ∈ Sn (R), ∀B ∈ S+
n (R), AB = BA =⇒ A2B ∈ S+

n (R).
4. Soit A ∈ S+

n (R).
Prouver qu’il existe B ∈ S+

n (R) telle que A = B2.

Corrigé exercice 66
On introduit, sur Mn,1 (R), la norme euclidienne, notée || ||, associée au produit scalaire canonique, définie par :
∀X ∈ Mn,1 (R), ||X|| =

√
XTX.

1. Soit A ∈ Sn (R). Prouvons que A ∈ S+
n (R) ⇐⇒ sp(A) ⊂ [0,+∞[.

Raisonnons par double implication.

Supposons que A ∈ S+
n (R).

Prouvons que sp(A) ⊂ [0,+∞[.
Soit λ ∈ sp(A).
∃X ∈ Mn,1 (R) \ {0} / AX = λX.
Alors XTAX = XTλX = λ||X||2.
Or, A ∈ S+

n (R) donc XTAX ⩾ 0.
Donc λ||X||2 ⩾ 0.
Or, X ̸= 0 donc ||X||2 > 0.
Donc λ ⩾ 0.

Supposons que sp(A) ⊂ [0,+∞[.
Prouvons que A ∈ S+

n (R).
A ∈ Sn (R) donc, d’après le théorème spectral, ∃P ∈ O(n) / A = PDPT où D = diag (λ1, λ2, ..., λn).
Soit X ∈ Mn,1 (R).
XTAX = XTPDPTX = (PTX)TD(PTX).
Notons y1, y2, ..., yn les composantes de la matrice colonne Y = PTX.

Ainsi Y =


y1
y2
.
.
.
yn

 et donc XTAX = Y TDY =

n∑
i=1

λiy
2
i . (1)

Or, λ1, λ2,...,λn sont les valeurs propres de A donc, par hypothèse, ∀i ∈ J1, nK, λi ⩾ 0.
Donc ∀i ∈ J1, nK, λiy

2
i ⩾ 0.

Donc, d’après (1), XTAX ⩾ 0.
2. Soit A ∈ Sn (R).

Prouvons que A2 ∈ S+
n (R).(

A2
)T

= ATAT .
Or, A ∈ Sn (R) donc AT = A. Donc

(
A2
)T

= A2. Donc A2 ∈ Sn (R).

Soit X ∈ Mn,1 (R).
XTA2X = XTATAX = (AX)

T
(AX) = ||AX||2 ⩾ 0.

Donc A2 ∈ S+
n (R).

3. soit A ∈ Sn (R) et soit B ∈ S+
n (R).

On suppose que AB = BA.
Prouvons que A2B ∈ S+

n (R).
Remarque : par hypothèse, A et B commutent donc A2 et B commutent.
En effet : A2B = A(AB) = A(BA) = (AB)A = (BA)A = BA2.
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(A2B)T = BT
(
A2
)T

= BT
(
AT
)2.

Or, A ∈ Sn (R) et B ∈ S+
n (R) donc AT = A et BT = B.

Donc (A2B)T = BA2.
Or, d’après la remarque, A2 et B commutent.
Donc

(
A2B

)T
= A2B.

Donc A2B ∈ Sn (R).

Soit X ∈ Mn,1 (R).
A et B commutent donc XT

(
A2B

)
X = XTABAX.

Or, A est symétrique donc XTABAX = (AX)
T
B(AX).

On pose Y = AX.
Y ∈ Mn,1 (R) et B ∈ S+

n (R) donc (AX)
T
B(AX) = Y TBY ⩾ 0 .

Donc XTA2BX ⩾ 0.
Donc A2B ∈ S+

n (R).
4. Soit A ∈ S+

n (R).
A ∈ Sn (R) donc, d’après le théorème spectral et 1. :
∃P ∈ O(n) / A = PDPT où D = diag (λ1, λ2, ..., λn) avec ∀i ∈ J1, nK, λi ⩾ 0.
On pose ∆ = diag

(√
λ1,

√
λ2, ...,

√
λn

)
.

Alors A = P∆2PT = P∆PTP∆PT car PT = P−1.
C’est-à-dire, A =

(
P∆PT

)2.
On pose alors B = P∆PT .
On a A = B2.
De plus, BT =

(
PT
)T

∆TPT = P∆PT = B donc B ∈ Sn (R).
De plus, B est semblable à ∆ donc sp (B) =

{√
λ1,

√
λ2, ...,

√
λn

}
et donc sp (B) ⊂ [0,+∞[.

Donc B ∈ S+
n (R).
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EXERCICE 78 algèbre

Énoncé exercice 78
Soit E un espace euclidien de dimension n et u un endomorphisme de E.
On note (x|y) le produit scalaire de x et de y et ||.|| la norme euclidienne associée.

1. Soit u un endomorphisme de E, tel que : ∀x ∈ E, ||u(x)|| = ||x||.
(a) Démontrer que : ∀(x, y) ∈ E2 (u(x)|u(y)) = (x|y).
(b) Démontrer que u est bijectif.

2. On note O(E) l’ensemble des isométries vectorielles de E.
C’est -à-dire O(E) = {u ∈ L (E) / ∀x ∈ E, ||u(x)|| = ||x||}.

Démontrer que O(E) , muni de la loi ◦ , est un groupe.

3. Soit u ∈ L(E). Soit e = (e1, e2, ..., en) une base orthonormée de E.
Prouver que : u ∈ O(E) ⇐⇒(u(e1), u(e2), ..., u(en)) est une base orthonormée de E.

Corrigé exercice 78
1. Soit u ∈ L(E) tel que ∀(x, y) ∈ E2, ||u(x)|| = ||x||.

(a) Soit (x, y) ∈ E2.
On a, d’une part, ∥u(x+ y)∥2 = ∥x+ y∥2 = ∥x∥2 + 2(x | y) + ∥y∥2. (*)
D’autre part,
∥u(x+ y)∥2 = ∥u(x) + u(y)∥2 = ∥u(x)∥2 + 2(u(x) | u(y)) + ∥u(y)∥2 = ∥x∥2 + 2(u(x) | u(y)) + ∥y∥2. (**)
On en déduit, d’après (*) et (**), que (u(x) | u(y)) = (x | y).

(b) Soit x ∈ Keru.
Par hypothèse, 0 = ∥u(x)∥2 = ∥x∥2 .
Donc x = 0.
Donc Keru = {0E}.
Donc u est injectif.
Puisque E est de dimension finie, on peut conclure que l’endomorphisme u est bijectif.

2. Montrons que l’ensemble O(E) des isométries vectorielles est un sous-groupe du groupe linéaire (GL(E), ◦).
On a O(E) ⊂ GL(E) en vertu de ce qui précède.
On a aussi, évidemment, IdE ∈ O(E). Donc O(E) ̸= ∅.
Soit (u, v) ∈ (O(E))

2.
∀ x ∈ E,

∥∥u ◦ v−1(x)
∥∥ =

∥∥u(v−1(x))∥∥ =
∥∥v−1(x)∥∥ car u ∈ O(E).

Et
∥∥v−1(x)∥∥ =

∥∥v(v−1(x))∥∥ = ∥x∥ car v ∈ O(E).
Donc ∀ x ∈ E,

∥∥u ◦ v−1(x)
∥∥ = ∥x∥.

On en déduit que u ◦ v−1 ∈ O(E).
3. Soit u ∈ L(E). Soit e = (e1, e2, ..., en) une base orthonormée de E.

Supposons que u ∈ O(E).
Soit (i, j) ∈ (J1, nK)2.
u ∈ O(E) donc, d’après 1.(a), (u(ei)|u(ej)) = (ei|ej).
Or e est une base orthonormée de E donc (ei|ej) = δji où δji désigne le symbole de Kronecker.
On en déduit que ∀(i, j) ∈ (J1, nK)2,(u(ei)|u(ej)) = δji .
C’est-à-dire (u(e1), u(e2), ..., u(en)) est une famille orthonormée de E.
Donc, c’est une famille libre à n éléments de E avec dimE = n.
Donc (u(e1), u(e2), ..., u(en)) est une base orthonormée de E.

Réciproquement, supposons que (u(e1), u(e2), ..., u(en)) est une base orthonormée de E.
Soit x ∈ E.

Comme e est une base orthonormée de E, x =

n∑
i=1

xiei.
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||x||2 =

 n∑
i=1

xiei|
n∑

j=1

xjej

 =

n∑
i=1

n∑
j=1

xixj (ei|ej).

Or e est une base orthonormée de E donc ||x||2 =

n∑
i=1

x2
i . (*)

De même, par linéarité de u, ||u(x)||2 = (

n∑
i=1

xiu(ei)|
n∑

j=1

xju(ej)) =

n∑
i=1

n∑
j=1

xixj (u(ei)|u(ej)).

Or (u(e1), u(e2), ..., u(en)) est une base orthonormée de E, donc ||u(x)||2 =

n∑
i=1

x2
i . (**)

D’après (*) et (**), ∀ x ∈ E, ||u(x)|| = ||x||.
Donc u ∈ O(E).
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