

Balance avec jauge de contrainte

Les balances électroniques utilisent des jauges de contraintes : ce sont des résistances fines collées sur une lame métallique. Lorsqu'on pose une masse au bout de la lame, celle-ci se plie, et une jauge de contrainte collée sur sa face de dessus voit sa longueur augmenter ; il en résulte que la jauge, de résistance initiale R_0 au repos, voir sa résistance varier de

$$\Delta R = k.m \tag{1}$$

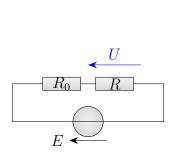
où k est une constante caractéristique de la lame et de la jauge et m la masse posée sur la balance. Dans la suite on notera $R = R_0 + \Delta R$. Pour les AN, on prendra $R_0 = 500 \,\Omega$ et $k = 1.4 \times 10^{-3} \,\Omega \cdot \mathrm{g}^{-1}$.

Pour mesurer la masse, il faut donc mesurer la variation de résistance ; pour cela, il faut transformer cette variation de résistance en variation de tension.

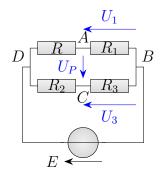
1. Pont diviseur simple

On propose le montage de la figure (a) : la résistance R est placée en série avec une résistance de valeur R_0 , et on mesure la tension aux bornes de R.

- (a) Exprimez U en fonction de E, R_0 , k et m.
- (b) Tracez la courbe donnant U en fonction de m pour des masses allant de $0\,\mathrm{g}$ à $2000\,\mathrm{g}$. On prendra $E=5\,\mathrm{V}$. Commentez (attention à l'échelle).
- (c) Est-il possible d'utiliser un montage amplificateur pour mieux mesurer la variation de U?



(a) Montage simple pour mesurer ${\cal R}$



(b) R dans un pont de Wheatstone

2. Pont de Wheatstone

On place maintenant la résistance R dans la figure (b).

- (a) Exprimez rapidement U_1 et U_3 en fonction de E et des résistances.
- (b) Déduisez-en U_P , la tension différentielle du pont.
- (c) On dit que le pont est équilibré lorsque $U_P=0$. Montrez que le pont est équilibré si et seulement si $R.R_3=R_1.R_2$.
- (d) On règle R_1 , R_2 et R_3 à la valeur R_0 ; ainsi, le pont est équilibré lorsque m = 0 g. Simplifiez l'expression de U_P . Tracez U_P pour des masses jusqu'à 2000 g. Commentez.
- (e) Pour plus de sensibilité, on peut mettre une deuxième jauge de contrainte à la place de R_3 . Tracez la nouvelle tension U_P obtenue.
- (f) On peut même remplacer R_1 et R_2 par deux jauges de contraintes placées sous la lame, qui auront une résistance $R' = R_0 \Delta R$. Tracez la nouvelle tension U_P obtenue.
- (g) On reconsidère le cas avec une seule résistance (question 2d). Par la formule d'approximation d'une fonction par sa tangente, on peut montrer que $\frac{1}{2R_0 + \Delta R} \approx \frac{1}{2R_0} \frac{\Delta R}{4R_0^2}$. Déduisez-en que U_P peut s'écrire comme $U_P = \alpha.m$ avec α à préciser. Comparez avec la courbe obtenue.