

Circuit RC soumis à une tension quelconque

On considère un circuit RC série alimenté par une tension e(t). On prendra $R=2,2\,\mathrm{k}\Omega$ et $C=300\,\mathrm{nF}$.

- 1. Dessinez le circuit et vérifiez que vous savez reétablir l'ED vérifiée par la tension u_c aux bornes du condensateur : $RC\frac{du_C}{dt} + u_C = e(t)$.
- 2. Ouvrez un programme Python. Commencez par définir les constantes, et le temps caractéristique τ du circuit.
- 3. Mettez l'ED sous la forme $\frac{du_c}{dt} = f(u_c, t)$. Écrivez alors une fonction derivee(uc,t) prenant comme argument u_c et le temps, et renvoyant $\frac{du_c}{dt}$.

4. Réponse à une marche d'escalier

On suppose que le condensateur est initialement déchargé et que $e=5\,\mathrm{V}$ pour t>0.

- (a) Calculez par la méthode d'Euler $u_c(t)$ pour t > 0 par la méthode d'Euler, sur une durée de 5τ avec comme pas $h = \frac{\tau}{100}$. Tracez la courbe obtenue.
- (b) Tracez sur la même courbe la formule théorique $u_{cth}(t) = 5 \left(1 e^{-t/\tau}\right)$ en prenant comme liste des temps 100 points entre 0 et 5τ . Comparez les courbes.
- (c) Augmentez le pas de simulation à $\frac{\tau}{10}$, puis $\frac{\tau}{2}$, puis 1,5 τ , enfin 2,5 τ . Commentez l'influence du pas en distinguant les intervalles $h < \tau, \, \tau < h < 2\tau$ et $h > 2\tau$.

On voit l'importance de connaître à l'avance les caractéristiques approchées du systèmes avant de se lancer dans une simulation.

5. Réponse à un créneau

On prend maintenant une tension en créneaux de période T oscillant entre E=+5V et -E. Cette fonction pourra être représentée mathématiquement ainsi :

$$e(t) = \begin{cases} +E & \text{si } (t\%T) < \frac{T}{2} \\ -E & \text{sinon} \end{cases}$$

Pour cette simulation on reprend $h = \frac{\tau}{100}$.

- (a) Simulez $u_c(t)$ lorsque $T = 10\tau$, sur une durée de 5T; tracez sur la même courbe $u_c(t)$ et e(t).
- (b) Réduisez T à 3τ , puis τ , puis $\frac{\tau}{2}$. Observez les changements : quelle forme prend la sortie ? comment varie son amplitude ?

6. Réponse à un sinus

Testez maintenant une entrée e(t) ayant la forme d'un cosinus d'amplitude 5 V et pour différentes fréquences : $100\,\mathrm{Hz}$, $300\,\mathrm{kHz}$ et $1\,\mathrm{kHz}$. Commentez la courbe obtenue.

7. Précision de la méthode d'Euler

On reprend la tension en marche d'escalier.

Pour différents pas de valeurs $\frac{\tau}{10^p}$ avec p un entier, simulez la courbe, puis calculez l'écart maximum entre les valeurs simulées et les valeurs théoriques. Tracez l'écart maximal en fonction de $\frac{1}{pas}$ (pour voir quelque chose, passez en échelle logarithmique avec les commandes plt.xs cale("log") et plt.yscale("log")). Commentez.