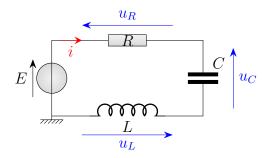
RLC série

On considère un circuit RLC série :



- 1. Reétablissez l'ED d'ordre 2 vérifiée par u_C .
- 2. Déterminez et calculez la résistance R_c pour laquelle le retour à l'équilibre est le plus rapide.
- 3. On pose $v_C = \frac{du_C}{dt}$. Reécrivez l'ED de départ en un système de deux ED d'ordre 1 portant sur u_C et v_C .
- 4. On va résoudre numériquement ce système pour e passant de $E=5\,\mathrm{V}$ à $0\,\mathrm{V}$, avec les valeurs : $L=32\,\mathrm{mH},\,C=100\,\mathrm{nF},\,R=50\,\Omega,$ et les CI $u_C(0^+)=E$ et $\frac{du_C}{dt}(0^+)=0$.

Pour cela:

- calculez la période propre T_0 du circuit; on prendra alors comme temps de simulation $10T_0$ et comme pas $\frac{T_0}{1000}$
- calculez le nombre de points. Créez 3 tableaux de zéros, un pour t, un pour u_C et un pour v_C
- appliquez alors les relations de récurrence de la méthode d'Euler

Tracez $u_C(t)$.

- 5. Calculez aussi i(t); tracez $u_R(t)$ et $u_L(t)$.

 Indication: cette question se fait simplement par des calculs vectorisés sur les tableaux de u_C et v_C , sans besoin de boucles.
- 6. Calculez les énergies $E_C(t)$, $E_L(t)$ et $E_{total}(t)$. Tracez les courbes d'énergie et commentez.
- 7. Observez ce qui se passe si $R = 0 \Omega$ (commentaire?), $R = 100 \Omega$, 200Ω , 500Ω , $1 k\Omega$, $5 k\Omega$.