
TD n° 14
Oscillateur non harmonique

Dans le TD précédent, on a étudié l’oscillateur harmonique. On a vu en cours que tout système
au voisinage de sa position d’équilibre se comporte comme un oscillateur harmonique, mais ce n’est
qu’une approximation. Si l’amplitude du mouvement augmente et que le système s’éloigne de plus en
plus de l’équilibre, alors des termes non-linéaires apparaissent, qu’on va étudier aujourd’hui à l’aide
de scipy.integrate.odeint.

On va s’intéresser par exemple à une molécule diatomique O2 : ce sont deux atomes identiques
d’oxygène, de masse m = 16×1,7×10−27 kg, qui restent attachés par une force d’origine partiellement
quantique, partiellement électrique ; cette force les attire mais pas trop, car quand ils s’approchent
trop, leurs nuages électroniques se repoussent. Il existe divers modèles pour représenter cette force ;
nous prendrons ici celui d’une force conservative d’énergie potentielle
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avec r la distance entre les atomes, A une constante et re = 110 pm.
Toutes les autres forces (dont le poids) sont négligeables ici. On admettra qu’une théorie totalement

hors programme (la théorie du mobile fictif) nous permet de traiter le mouvement des deux atomes
comme si l’un des deux était fixe et l’autre se déplaçait avec une masse m∗ = m

2
. On repèrera alors la

position du premier atome par un point O1 fixe, et celle du second par ~O1O2 = r~u avec ~u un vecteur
unitaire fixe.
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Allure de l’énergie potentielle

1. Exprimez dV
dr

et déduisez-en que re représente la distance à l’équilibre.
2. La molécule de dioxygène possède une raie d’absorption infrarouge à λ = 9,10 µm. Cette raie

correspond à la fréquence f0 de vibration de la molécule au voisinage de sa position d’équilibre :
quand on envoie de la lumière ayant la même fréquence f0, alors il apparaît un phénomène
qu’on étudiera bientôt, appelé résonance, qui provoque l’absorption de la lumière. Calculez
numériquement f0 ; on donne c = 3× 108 m · s−1.
D’après le cours, f0 = 1

2π

√
1
m∗

d2V
dr2

(re). Exprimez A en fonction de re, m et f0. Déduisez-en la
valeur numérique de A.

3. Tracez la courbe V (r) (idéalement en électron-volt : 1 eV = 1,6 × 10−19 J) entre 0, 1re et 5re.
Quel sera le type de mouvement en fonction de l’énergie mécanique ?

4. À partir de l’expression de l’énergie mécanique, montrez que r vérifie l’équation différentielle
m
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5. Simulez alors r(t) sur une durée de quelques périodes (attention à bien choisir le temps de
simulation, qui est ici très très court) à l’aide de la fonction odeint. On prendra comme CI :
r(0) = 0,9999re et ṙ(0) = 0.
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6. Tracez les nouvelles courbes r(t) pour r(0) = 0,9re, puis r(0) = 0,88re. Commentez.
7. Pour interpréter ces courbes, calculez numériquement les énergies mécaniques correspondant

aux 3 conditions initiales utilisées précédemment, et tracez pour chacune d’entre elles une ligne
horizontale sur le graphique de V (r) (on peut le faire à l’aide de plt.axhline(valeur)).

8. Pour les deux premières conditions initiales, le mouvement est périodique, mais trois change-
ments apparaissent :
— comment évolue la période des oscillations lorsque l’amplitude augmente ?
— comment évolue la valeur moyenne de l’oscillation (on pourra se contenter de mesurer

rmax+rmin

2
) ?

— comment évolue la forme du signal ?
9. Que représente physiquement l’énergie du minimum de V ? Comparez avec les valeurs tabulées

trouvées sur Internet.
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