
Déterminer l'équation d'une droite

On se limitera à la géométrie plane ici. On se place dans le plan d'origine O, d'axes (Ox) et (Oy). On ne considère pas le cas des droites horizontales (y = cste) ou verticales (x = cste).

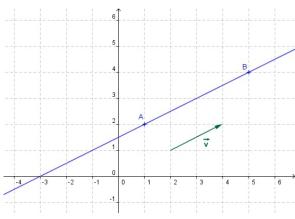
I. Droite passant par deux points

La droite (AB) passant par les deux points A et B de coordonnées (xA, yA) et (xB, yB) respectivement est de pente $a = \frac{\Delta y}{\Delta x} = \frac{y_B - y_A}{x_B - x_A}$ et a pour équation :

$$y = a(x - x_A) + y_A = \frac{y_B - y_A}{x_B - x_A}(x - x_A) + y_A$$

<u>Cas particulier</u>: Si A est sur l'axe (Ox) et B sur l'axe (Oy), alors $A = (x_A, 0)$ et $B = (0, y_B)$,

la pente vaut : $a = \frac{\Delta y}{\Delta x} = -\frac{y_B}{x_A}$, l'équation de la droite est : $y = -\frac{y_B}{x_A}(x - x_A)$, soit encore : $\frac{x}{x_A} + \frac{y}{x_B} = 1$


La droite (AB) passant par les deux points A et B de coordonnées (xA, 0) et (0, yB) respectivement a pour équation :

$$\frac{x}{x_A} + \frac{y}{x_B} = 1$$

II. Droite passant par un point et portée par un vecteur

La droite passant par le point $A = (x_A, y_A)$ et dirigée par le vecteur $\vec{u} = (u_x, u_y)$ est de pente $a = \frac{u_y}{u_x}$ et a pour équation :

$$y = \frac{u_y}{u_x}(x - x_A) + y_A$$

