Chapitre 4

TRANSFORMATIONS CHIMIQUES

Exo 1 : Combustion du butane

On considère la réaction de combustion du butane C_4H_{10} par le dioxygène O_2 . On obtient du dioxyde de carbone CO_2 et de l'eau, le tout en phase gazeuse. L'ensemble est dans une enceinte thermostatée à $T_0 = 700$ K, fermée par un piston mobile. La pression extérieure est $P_0 = 1$ bar.

- 1) Ecrire l'équation-bilan.
- 2) On part d'un mélange équimolaire de 1 mol de butane pour 1 mol de dioxygène.
- a) On suppose la réaction totale ; quelle est la composition à l'état final du système ?
- b) Quel est le volume final ? On donne R = 8,31 J. mol^{-1} . K^{-1}
- c) Pour quel avancement la quantité totale gazeuse aura augmenté de 10%?

Exo 2: Divers états d'équilibre

On mélange à l'état initial à 25 °C et en solution aqueuse de l'acide éthanoïque de concentration initiale [CH₃COOH]₀ = a, de l'acide fluorhydrique de concentration initiale [HF]₀ = b, de l'éthanoate de sodium de concentration initiale [CH₃COONa]₀ = c et du fluorure de potassium de concentration initiale [KF]₀ = d. L'éthanoate de sodium est complètement dissocié et donne des ions CH₃COO et Na⁺; de même pour le

fluorure de potassium, totalement dissocié en K⁺ et F⁻. Le système évolue selon la réaction d'équation-bilan :

$$CH_3COOH + F^- = CH_3COO^- + HF$$

On donne sa constante d'équilibre à 298 K : $K = 10^{-1.6} = 2.51.10^{-2}$

Prévoir le sens de l'évolution de la réaction et déterminer l'avancement volumique à l'équilibre si :

- a) $a = d = 1,0. \ 10^{-1} \ \text{mol.L}^{-1} \ \text{et b} = c = 0 \ \text{mol.L}^{-1}$
- b) $a = b = c = d = 1,0. 10^{-1} \text{ mol.L}^{-1}$

Exo 3: Equilibre de complexation

On considère à 25°C un bécher contenant 20 mL d'une solution d'ammoniaque NH_3 de concentration $C_0 = 1,0$ mol. L^{-1} , dans lequel on ajoute 30 mL d'une solution de sulfate de cuivre $CuSO_4$ de concentration $C_1 = 0,010$ mol. L^{-1}

L'équation-bilan est la suivante : $Cu_{(aq)}^{2+} + 4 NH_{3(aq)} = Cu(NH_3)_{4(aq)}^{2+}$ de constante $K = 10^{12,6}$ à 25°C. Déterminer les concentrations à l'équilibre.

Exo 4 : Le complexe dicyanoargentate

On prépare une solution aqueuse décimolaire de dicyanoargentate de potassium $KAg(CN)_2$ totalement dissocié en ions K^+ et $Ag(CN)_2^-$. Ces derniers se dissocient partiellement selon : $Ag(CN)_2^- = Ag^+ + 2CN^-$, réaction de constante $Kd = 10^{-20.7}$.

Déterminer la composition de la solution.

Exo 5 : Equilibre en phase gazeuse

On étudie à T = 550 K et P = 1 bar fixées la synthèse de PCl₅ en phase gazeuse selon : $PCl_{3(g)} + Cl_{2(g)} = PCl_{5(g)}$, de constante K = 0,30, avec un mélange équimolaire.

Déterminer le taux de conversion à l'équilibre de PCl₃ et les différentes pressions partielles à l'équilibre.

Exo 6: Equilibre en phase gazeuse

On étudie à T = 800 K et P = 1 bar fixées la synthèse de SO₃ en phase gazeuse selon $2SO_{2(g)} + O_{2(g)} = 2SO_{3(g)}$ de constante K = 1,21. 10^{10} . On a initialement 7,0 mol de SO₂, 10,0 mol de O₂ et 83,0 mol de N₂. Déterminer la composition à l'équilibre.

Exo 7 : Equilibre en phase gazeuse

On étudie l'équilibre en phase gazeuse : $2NO_{(g)} + Br_{\chi_g} = 2NOBr_{(g)}$

La constante d'équilibre à 333 K est K° = 13,2. A T_1 = 300 K, on introduit dans un récipient de volume constant V = 2 L du monoxyde d'azote NO jusqu'à atteindre la pression P_1 = 6,00. 10^3 Pa. On ajoute dans ce récipient une masse m = 300 mg de dibrome liquide Br_2 . La température du mélange est portée à T_2 = 333K, température à laquelle tous les corps en présence sont à l'état gazeux.

Données : R = 8,31 J. K^{-1} . mol^{-1} . Masse molaire du dibrome $M(Br_2) = 159,8$ g . mol^{-1} .

Calculer les qunatités initiales.

Déterminer l'avancement à l'équilibre et la composition du système.

Calculer la pression totale quand l'équilibre final est atteint.

Exo 8: Réaction totale ou non

1) On mélange un volume V_1 = 20 mL de solution de phénol C_6H_5OH de concentration C_1 = 0,020 mol.L⁻¹ et un volume V_2 = 20 mL de solution d'hydroxyde de sodium Na^+ , OH^- de concentration C_2 = 0,080 mol.L⁻¹ . Il se produit une réaction d'équation :

$$C_6H_5OH + OH^- = C_6H_5O^- + H_2O$$

de constante $K^{\circ} = 10^4$. On rappelle que l'hydroxyde de sodium est une base forte, donc est totalement dissocié en solution aqueuse.

- a) Déterminer l'avancement volumique à l'équilibre.
- b) Calculer le taux de transformation du réactif limitant ; conclure.
- 2) On mélange un volume V_1 = 20 mL de solution de nitrate de cadmium, Cd^{2+} , 2 NO_3^- de concentration C_1 = 0,020 mol.L⁻¹ et un volume V_2 = 20 mL de solution d'hydrazine N_2H_4 de concentration C_2 = 0,080 mol.L⁻¹. Il se produit une réaction d'équation :

$$Cd^{2+} + 4 N_2H_4 = Cd(N_2H_4)_4^{2+}$$

de constante $K^{\circ} = 10^4$. On signale que le nitrate de cadmium est totalement dissocié en solution aqueuse.

- a) Déterminer l'avancement volumique à l'équilibre.
- b) Calculer le taux de transformation du réactif limitant ; conclure.
- 3) Commenter l'énoncé suivant : « Une réaction dont la constante thermodynamique est supérieure à 10⁴ peut être considérée comme totale. »