Chapitre 11

CINETIQUE EXPÉRIMENTALE

Exo 1 : Détermination de l'énergie d'activation (*)

La pyrolyse de l'éthanal selon $CH_3CHO \rightarrow CH_4 + CO$ est une réaction d'ordre courant égal à 2 : $v = k \left[CH_3CHO \right]^2$.

Sa constante de vitesse a été mesurée entre 700 K et 1000 K:

T(K)	700	730	760	790	810	840	940	1000
k (mol ⁻¹ .L.s ⁻¹)	0,011	0,035	0,105	0,343	0,789	2,17	20,0	145

En admettant la validité de la loi d'Arrhénius, déterminer l'énergie d'activation Ea et le facteur préexponentiel A correspondant.

Exo 2 : Etude d'une cinétique en phase gaz (**)

On suit la réaction de l'éthylamine en phase gaz :

$$CH_3CH_2NH_2 \rightarrow C_2H_4 + NH_3$$

La réalisation expérimentale de cette réaction se fait à volume constant et à température constante. Il n'y a que de l'éthylamine au début de l'expérience. On mesure la pression P dans l'enceinte à différents instants. On obtient les résultats suivants :

t (min)	0	1	4	10
P (Pa)	7240	7900	9480	11720

- 1) On introduit le coefficient de dissociation α de $CH_3CH_2NH_2$; on rappelle que α est le rapport du nombre de moles de $CH_3CH_2NH_2$ dissociées sur nombre de moles de $CH_3CH_2NH_2$ initial.
- a) Exprimer la pression totale et la pression partielle en éthylamine $CH_3CH_2NH_2$, notée P_A , en fonction de la pression initiale notée P_0 et de α .
- b) En déduire la pression partielle P_A en fonction de la pression totale P et de la pression initiale P₀.
- 2) Montrer que la réaction est d'ordre 1 et trouver la constante de vitesse k.

Exo 3: Décomposition de N₂O₅(*)

L'expérience montre que la réaction suivante, en phase gazeuse :

$$N_2O_5 \rightarrow 2 NO_2 + 1/2 O_2$$

réalisée à 160 °C, se comporte comme une réaction du premier ordre par rapport au pentaoxyde de diazote N_2O_5 . Soit k, la constante de vitesse pour une température donnée.

- 1) Etablir la relation donnant $[N_2O_5]$ en fonction du temps et de la concentration initiale $[N_2O_5]_0$.
- 2) Cette expérience est réalisée à 160 °C dans un récipient de volume constant; au bout de 3 secondes, 2/3 de N₂O₅ initialement introduit a été décomposés. Calculer, à cette température, la valeur k de la constante de vitesse en précisant l'unité.
- 3) Calculer le temps de demi-réaction à cette température; quel serait-il si la concentration initiale $[N_2O_5]_0$ avait été doublée?
- 4) La constante k suit la loi d'Arrhénius: k = A.exp(-Ea/(R.T))

L'énergie d'activation est Ea = 103 kJ.mol⁻¹. Calculer k', constante de vitesse à la température T' à laquelle il faut effectuer la réaction précédente pour que 95% du pentaoxyde de diazote initial soit décomposé au bout de 3 secondes. Déterminer cette température θ et calculer le nouveau temps de demi-réaction.

Exo 4 : Cinétique d'une oxydoréduction (Mines Ponts MP 2010)

On s'intéresse à la cinétique de la réaction de réduction de Hg^{2+} par Fe^{2+} en solution aqueuse: $2Fe^{2+}+2Hg^{2+}=Hg_2^{2+}+2Fe^{3+}$

$$2Fe^{2+}+2Hg^{2+}=Hg_2^{2+}+2Fe^{3+}$$

On supposera que la loi de vitesse suit la forme $v=k[Fe^{2+}]^p[Hg^{2+}]^q$

On suit la réaction par spectrophotométrie avec différentes concentrations initiales $[Fe^{2+}]_0$ et $[Hg^{2+}]_0$ on obtient les résultats suivants (le temps est mesuré en secondes) :

Expérience $n^{\circ}l$: $[Fe^{2+}]_0 = 0, 1 \text{ mol.}L^{-1}$, $[Hg^{2+}]_0 = 0, 1 \text{ mol.}L^{-1}$

t(s)	0	1	2	3	∞
$[Hg^{2+}]/[Hg^{2+}]_0$	1	0,50	0,33	0,25	0

Expérience $n^{\circ}2$: $[Fe^{2+}]_0 = 0,1 \text{ mol.}L^{-1}$, $[Hg^{2+}]_0 = 0,001 \text{ mol.}L^{-1}$

t(s)	0	1	2	4	∞
$[Hg^{2+}]/[Hg^{2+}]_0$	1	0,37	0,14	0,02	0

- 1) Expliquer l'intérêt du choix [Fe²⁺]₀=[Hg²⁺]₀ dans la première expérience, et l'intérêt du choix $[Fe^{2+}]_0 >> [Hg^{2+}]_0$ dans la seconde.
- 2) Montrer que l'ordre global de la réaction est 2 et déterminer la constante de vitesse k.
- 3) Montrer qu'on peut raisonnablement estimer que les ordres partiels vérifient p=q=1.

Exo 5: Temps de 1/2 et 3/4 de réaction

- 1) Soit une réaction d'équation-bilan: $A \rightarrow B$ dont l'ordre courant est égal à 1. Etablir l'expression des temps de demi-réaction T_{1/2} et de trois quarts de réaction T_{3/4}. Quelle relation existe-t-il entre eux?
- 2) On étudie, à température et volume constants, la réaction de synthèse du phosgène COCl₂ selon : $CO(g) + Cl_2(g) \rightarrow COCl_2(g)$

On réalise deux expériences au cours desquelles on mesure la pression partielle de phosgène en fonction du temps.

Expérience n• 1: $(P_{Cl_0})_1 = 400 \text{ mm Hg}$; $(P_{CO})_0 = 4 \text{ mm Hg}$

(2 /	U				
t (min)	0	34,5	69	138	∞
P(COCl ₂) (mmHg)	0	2,0	3,0	3,75	4,0

Expérience n• 2 : $(P_{CL}) = 1600 \text{ mm Hg}$; $(P_{CQ})_0 = 4 \text{ mm Hg}$.

1	(012)	0	. (6070	C		
t (min)		0	4,3	8,6	17,3	«
P(COCl ₂) (mmH		0	2.0	3.0	3.75	4.0

On se propose de vérifier que la vitesse de la réaction peut être mise sous la forme :

$$v = k [CO]^{\alpha} [Cl_2]^{\beta}$$

Montrer que les résultats expérimentaux permettent de déterminer α et β .

Quel est l'ordre total de cette réaction?

Exo 6: Réaction entre les ions iodures et les ions persulfates (Petites Mines 98)

Le persulfate S₂O₈²⁻ est un oxydant puissant qui peut être réduit en sulfate SO₄²⁻selon :

$$S_2O_8^2 + 2I = 2SO_4^2 + I_2$$

Cette réaction est une réaction lente dont on veut étudier la cinétique. Par une méthode qu'on n'exposera pas ici, il est possible de mesurer la vitesse initiale V_0 de cette réaction.

On détermine cette vitesse pour différentes concentrations initiales en $S_2O_8^{2-}$ et I^- . Les résultats sont rassemblés dans le tableau qui suit :

N° Expérience	$[S_2O_8^{2-}]_0 \text{ (mol.L}^{-1})$	[I ⁻] ₀ (mol.L ⁻¹)	$V_0 \text{ (mol.L}^{-1}.s^{-1})$
1	0,100	0,100	5,00. 10 ⁻⁴
2	0,100	0,050	2,45. 10 ⁻⁴
3	0,100	0,025	1,26. 10 ⁻⁴
4	0,050	0,100	2,50. 10 ⁻⁴
5	0,025	0,100	1,24. 10 ⁻⁴

Déterminer l'ordre partiel par rapport à $S_2O_8^{2-}$ et l'ordre partiel par rapport à Γ . Calculer la constante de vitesse k de cette réaction.

Exo 7 : Saponification de l'éthanoate d'éthyle

On s'intéresse à la saponification de l'éthanoate d'éthyle selon :

$$CH_3COOC_2H_5 + OH^- \rightarrow CH_3COO^- + C_2H_5OH$$

est d'ordre 1 par rapport à chacun des réactifs. Dans un mélange stœchiométrique, où les réactifs ont chacun une concentration initiale égale à 20 mmol.L⁻¹, on suit le déroulement de la réaction par dosage acido-basique.

- 1) Au bout de 20 min, on prélève 100 mL de la solution que l'on dilue dans l'eau froide et l'on dose la soude restante par une solution d'acide chlorhydrique à 0,100 mol.L⁻¹. L'équivalence est obtenue pour 6,15 mL. Calculer la constante de vitesse de la réaction.
- 2) Quel volume v' d'acide faut-il verser pour doser un échantillon de 100 mL prélevé 20 min plus tard ?
- 3) Au bout de combien de temps la saponification est-elle totale à 1% près ?