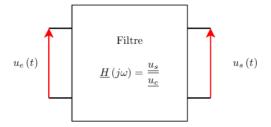


FM 10 – Etude d'un filtre linéaire

Un filtre linéaire est composé d'un circuit linéaire recevant un signal d'entrée $u_e(t)$ et délivrant un signal de sortie $u_s(t)$.

Il est entièrement caractérisé par sa fonction de transfert $\underline{H}(j\omega)$.



Le gain en décibel est $G_{dB} = 20 \log |\underline{H}|$.

La phase du filtre est le déphasage de la sortie par rapport à $\phi = arg(\underline{H})$.

I. Nature du filtre

Comment déterminer la nature d'un filtre?

On étudie le circuit à très basse fréquence $(\omega \to 0)$ et à très haute fréquence $(\omega \to \infty)$, en dessinant des schémas équivalents.

- À très basse fréquence (TBF), une bobine idéale L se comporte comme un fil. À l'inverse, elle se comporte comme un interrupteur ouvert à très haute fréquence (THF).
- C'est le contraire avec un condensateur, celui-ci se comporte comme un interrupteur ouvert à TBF et comme un fil à THF.

Si $\underline{s}(t) = 0$ filtre non passant, si $\underline{s}(t) \neq 0$: filtre passant. On peut ainsi conclure.

II. Fonction de transfert

Comment déterminer la fonction de transfert d'un filtre?

- Pour un filtre passif (sans ALI), on utilise souvent des **ponts diviseurs de tension** et des **équivalences d'impédances**.
- Pour un filtre actif (avec ALI), on peut aussi utiliser le **théorème de Millman** ou la loi des nœuds en terme de potentiel.

Comment déterminer la ou les pulsations de coupure d'un filtre ?

- Par le calcul:

Il faut résoudre $\left|\underline{\underline{H}}(j\omega_c)\right| = \frac{\left|\underline{\underline{H}}\right|_{max}}{\sqrt{2}}$, où $\left|\underline{\underline{H}}\right|_{max}$ est l'amplification maximale du filtre.

Pour un filtre passe-bas : $|\underline{H}|_{max} = |\underline{H}(0)|$

Pour un filtre passe-haut : $|\underline{H}|_{max} = |\underline{H}(\infty)|$

Pour un filtre passe-bande : $|\underline{H}|_{max} = |\underline{H}(\omega_0)|$ (ω_0 étant la pulsation propre de l'oscillateur)

- Graphiquement:

On lit la (ou les) pulsation(s) pour laquelle (ou lesquelles) $G_{dB}(\omega_c) = G_{dB,max}-3$ en dB

III. Diagramme de Bode

Comment tracer le diagramme de Bode asymptotique d'un filtre ?

Etude du gain en décibel

- 1. Réfléchir à l'allure de la courbe selon la nature du filtre :
- Pour un passe-bas et un passe-haut, on cherche 1 asymptote horizontale et une asymptote oblique.
- Pour un passe-bande, on cherche deux asymptotes obliques.
- 2. Etudier les limites à TBF et THF de $\underline{\mathbf{H}}(\mathbf{j}\omega)$, pour cela on ne garde au dénominateur et au numérateur que le terme le plus grand.
- 3. En déduire les **expressions limites** du gain en décibel du filtre $G_{dB} = 20 \log |\underline{H}|$ à TBF et THF :
- Si $G_{dB} \rightarrow constante$: asymptote horizontale
- $Si~G_{dB} \rightarrow constante \pm 20~log~\omega$: asymptote horizontale de pente $\pm~20~dB/d\acute{e}$ cade
- Si $G_{dB} \rightarrow constante \pm 40 \log \omega$, asymptote horizontale de pente $\pm 40 \ dB/d\acute{e}cade$

Etude de la phase

- **1.** Exprimer la phase du filtre : $\varphi = arg(H)$
- 2. Etudier les limites à TBF et THF: on en déduit 2 asymptotes horizontales

IV. Etude du signal en sortie

Soit un signal d'entrée : $e(t) = E_0 + \sum_{n=1}^{\infty} e_n(t) = E_0 + \sum_{n=1}^{\infty} E_n \cos(2\pi n f t + \varphi_{e,n})$

Le signal de sortie correspond à l'addition des différents harmoniques transmis et modifiés par le filtre.

Il est de la forme : $s(t) = S_0 + \sum_{n=1}^{\infty} s_n(t) = S_0 + \sum_{n=1}^{\infty} S_n \cos(2\pi n f t + \varphi_{s,n})$

Comment prévoir rapidement l'allure du signal de sortie ?

On superpose le diagramme de Bode et le spectre de e(t). On ne garde pour le signal de sortie que les harmoniques contenues dans la bande passante.

Comment exprimer le signal de sortie ?

Pour chaque composante du spectre du signal d'entrée de pulsation ω :

- L'amplitude de la composante en sortie est : $S_n = |\underline{H}(jn\omega)|E_n$
- La phase de la composante en sortie est telle que : $m{arphi}_{s,n} = arg\left(m{\underline{H}}(jm{n}m{\omega})
 ight) + m{arphi}_{e,n}$