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Le cours

On trouve des oscillateurs dans toutes les branches de la Physique et les exemples d'oscillateurs sont
nombreux : pendule, amortisseur de voiture, corde de guitare, circuits électriques, il existe méme des
réactions chimiques oscillantes...

Un systeme est un oscillateur si au moins 'une des grandeurs qui le caractérise évolue de maniere
périodique ou pseudo-périodique autour d’une valeur centrale. L'oscillateur harmonique est un cas
particulier d’oscillateur. Un systéme est un oscillateur harmonique si les grandeurs vibratoires qui le
décrivent évoluent de maniere sinusoidale en fonction du temps.

Dans ce cours nous allons étudier les modéles de I'oscillateur harmonique non amorti puis de I'oscillateur
harmonique amorti a partir de 1'étude d'un oscillateur électrique.

La forme des équations obtenues et donc les méthodes de traitement mathématique des

équations sont générales, elles s'appliqueront a d'autres types d'oscillateurs, notamment
mécaniques.

I. Les oscillateurs harmoniques non amortis (OHNA)

1. Définition

Un oscillateur harmonique non amorti est décrit, a une constante preés, par une fonction
sinusoidale.

2. Description d’'une grandeur sinusoidale

Considérons une grandeur sinusoidale : x(t) = x,, cos(wot + @)

&y Période I, des oscillations

e xn estl’amplitude du signal sinusoidal

o T, estlapériode :la période T du signal périodique quelconque est le plus petit intervalle de temps
au bout duquel se reproduit le signal identique a lui-méme : x(t) = x(t + Ty).

o fo = 1/Tgestla fréquence en Hz : nombre de périodes par seconde

2
e w, estla pulsation du signal sinusoidal : w¢ = 27 f=—, w peut étre interprétée comme la vitesse
Ty

angulaire lors d’'un mouvement circulaire.

e (wot + @) estlaphase instantanée (ou phase a I'instant t).
e ¢ estlaphaseal’origine (sa valeur estliée au choix de I'origine des temps) : x(0) = x,, cos @
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Un tel signal peut également se mettre sous la forme :

x(t) = Acos(wgt) + B sin(wyt) avec A = x, cos@ ;B = —x,, sin@; x,, =A% + B2 ; tan ¢ = —%

3. Equation différentielle d'un OHNA

Les oscillations peuvent se faire autour d’une valeur constante notée dans la suite du cours x,, dans ce
cas, pour un OHNA de parametre x(t) : x(t) = X + Xy, cos(wot + @).

On peut remarquer que pour des oscillations autour de 0 (Cte = 0):

dx(t) _ . .
T x(t) = —xm wosin(wot + @)
dx(t) . . 2 o
T X(t) = —xmwo” cos(wot + @) = —we“x(t)

L’équation différentielle d’'un OHNA oscillant autour de 0 est ¥ + wy?x = 0.

Généralisons a des oscillations harmoniques autour de Xe:

On appelle oscillateur harmonique non amorti tout systeme oscillant dont le parametre x(t)
vérifie une équation différentielle du 21d ordre du type :

X+ wo’x = wp’xe
Les solutions de cette équation sont de la forme : x(t) = x,, + X, cos(wot + @)

- X estlavaleur autour de laquelle x(t) oscille.
- x,, estl'amplitude de x(t) : amplitude des oscillations.
- g est la pulsation propre (rad/s) = pulsation des oscillations en l'absence de dissipation

d'énergie (To = w—" estla période propre, période des oscillations non amorties)
0

- ¢ estlaphase al'origine

4. Exemple électrique : le circuit LC

4.1 Etude du circuit L.C en régime libre

Etudions le circuit LC ci-dessous. Le condensateur est supposé initialement chargé sous la tension E.

iy g[, “ | U

£1 4P 1
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Le circuit LC est un oscillateur harmonique non amorti dont, en régime libre, la
tension u. obéit a I’équation différentielle :

U +—u, =0
(o} LC (o)
La pulsation des oscillations est la pulsation propre wy = \/%
Exemple: E =5V,C =1uF,L =1mH
4l
2
g,
-2
4l
ll) 5‘0 160 15;0 260 2:’;0 360 3:';0 4[‘)0

t (en microseconde)

o Considérons le méme circuit mais alimenté par une source de tension continue E.

L
: /000
h iy,
E () O |ug
L’équation différentielle devient : ii, + %uc = %E .

La solution est de la forme u(t) = E + U,,, cos(wyt + ¢).
u.(t) oscille maintenant autour de E.

Cas d’un condensateur initialement déchargé :

(V)
/\/\/\ £ (ms)

Ty = 2nVLC

g T

2E
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4.2 Etude énergétique du régime libre

L’énergie totale stockée dans le circuit LC est: E(t) = E.(t) + Ep,(¢t) = %C u.(t)% + %L i(t)?

£7 Ap 2

Exemple:E =5V,C =1uF,L=1mH

12 4
10 4
8 4
—— Ee (en microjoule)
6 Em (en microjoule)
4 4
2
0 m

150 200 250
t (en microseconde)

E(t) = Cte = E(0) : le transfert d'énergie entre la capacité et la bobine est totale (il n'y a
pas de pertes en I’'absence de résistances).

II. Oscillateurs harmoniques amortis (OHA)

Si on réalise le montage précédent, on observe des oscillations qui s’atténuent au cours du temps.
Ceci estdii a une dissipation énergétique par effet Joule dans les résistances, celle du GBF et celle
de la bobine. Si on rajoute une résistance dans le circuit et que la résistance est grande, les
phénomenes dissipatifs sont trop importants et on observe alors I’absence d’oscillations.

Nous allons rendre compte de cette dissipation d'énergie, en introduisant une résistance dans le
circuit précédent.

1. Etude du circuit RLC

Etudions le circuit RLC ci-dessous. On suppose le condensateur initialement chargé. A t = 0, on ferme
I'interrupteur.

iy, I i e

£7 AP 3
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Le circuit RLC est un oscillateur harmonique dont, en régime libre, la tension u. obéit ’
aI’équation différentielle :

. L. 1
uc+Euc+Euc—O. ‘

2. Modele de l'oscillateur harmonique amorti

Un oscillateur harmonique amorti est décrit par une équation différentielle du 2nd ordre de la
forme :

Wy

5&+F.5C+ wo?x = wy?

Xoo

- X, estlavaleur de x en régime établi, lorsque t—c0

- g est la pulsation propre (rad/s) = pulsation caractéristique de 1'oscillateur en I'absence de
dissipation d'énergie (OHNA)

- Q estle facteur de qualité, nombre sans dimension qui caractérise 'amortissement

. ‘. 1 1
Cas du circuit RLC série: wqy = 7ic etQ = E\/%

3. Solutions de I'équation différentielle
Pour exprimer la solution homogene de I'équation différentielle type, il faut résoudre 1'équation
caractéristique : X? + %X + wy? = 0 dont le discriminant est A = w,? (é - 4).

- SiA < 0alorslesracines, X; et X, sont complexes conjuguées.
- SiA > 0alorslesracines X; et X, sont réelles et négatives.
- SiA = 0alors X; = X, = X (racine double)

Quel que soit le signe du discriminant, la solution particuliere : x, = Cte = x,.

3.1 Cas A<0:Régime pseudopériodique

Les racines de I'équation caractéristique sont complexes conjuguées: X;, =

2
X, = —(;—8 —jQ et X, = —(;—3 +jQ avec Q= % = wq /1 - (i) la pseudo-pulsation.

SiQ> %, le régime est pseudo périodique et les solutions de 1'équation différentielle sont de la

forme :

_@o
x(t) = e 2¢*[Acos(Qt) + B sin(Qb)] + xo,

2
avec Q = wy /1 = (%) la pseudo-pulsation des oscillations et x,, la valeur de x en régime

permanent.

Les constantes A et B se déterminent avec les conditions initiales.

Exemple : avec X, =0
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T0=10s Q=10 x(0)=5 x'(0)=0

T T T T T T T T
[v] 20 40 60 80 100 120 140
ti{ens)

On observe des oscillations amorties.

On parle de régime pseudo-périodique car le régime est oscillatoire mais n'est pas périodique a

cause de la diminution de l'amplitude due a l'amortissement. Le signal oscille entre deux
_@9
enveloppes exponentielles de la forme +Ke 20",

La partie imaginaire positive Q est la pseudo-pulsation des oscillations.

- 2 2 T
La pseudo période est: T = EH = = =20

o -G 1-G)

Elle est supérieure a la période propre T et elle en est d'autant plus proche que le facteur de
qualité Q est grand donc que I'amortissement est faible.

_®0o
L'amplitude des oscillations décroit en e 20" , comme dans le chapitre précédent, on peut poser un

. ' . . 2 .
temps 1 caractéristique de 1'évolution de cette amplitude : 7 = w—Q Nous savons qu'au bout de 37
0

cette amplitude est inférieure a 5% de I'amplitude initiale. On peut donc dire qu'au bout de cette durée,
les oscillations ont quasiment disparu.

Avec le critere des 5%, le régime transitoire pseudo-périodique a une durée environ égale a 37 =
6Q

w().

Le régime transitoire est d’autant plus long que le facteur de qualité est grand.

Estimons le nombre d’oscillations :

6Q

2

~3T @ _8Q _(L)

N =~ _2m 2 1 20
2

wo 1—(%)

Si Q est suffisamment grand (Q > 2 suffit) alors N = % ~ Q

Pour un oscillateur suffisamment peu amorti le nombre de pseudo-oscillations d'amplitude non
négligeable (supérieure a 5% de I'amplitude initiale) est voisin du facteur de qualité.
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Ce résultat donne une méthode simple pour estimer le facteur de qualité d'un oscillateur : voir les courbes
ci-dessous ot la ligne horizontale coupe l'enveloppe a 5% de sa valeur initiale.

T0=10s Q=20 x(0)=5 x'(0)=0 T0=10s Q=10 x(0)=5 x'(0)=0

x (ua)

o n[\U”Uﬂvnvnvhvﬁv“v“v“v\fv\Nv E | /\ [\f\f\f\m,‘

! ! ! | | | ! ! !
0 25 50 75 100 125 150 175 200 0 20 40 60 80
t (ens)

T
100
tiens)

T0=10s Q=3 x(0)=5 x'(0)=0

-1 4
iy
0 5 10 15 20

T T T T
25 30 35 40

x (ua)

tlens)

3.2 Cas A>0:Régime apériodique

1 . 1 . ' s . e . A
A = wy? (@ — 4) >0siQ< > Les racines de I'équation caractéristique sont réelles et négatives :
— @1, 1 _ — % (1 1 _
%1=-3 (Q+\/QZ 4) et X=-5 (Q @ 4)
Les deux racines de I'équation caractéristique sont réelles et négatives.
La solution particuliére est inchangée et vaut toujours Xe.

La solution générale est de la forme : x(t) = Ae*1t + BeX2t + x,

x(t) est, a une constante x,, pres, la somme de deux termes exponentiels qui tendent vers 0 : il n'y a pas
d'oscillations, le régime est dit apériodique.

SiQ < %, le régime est apériodique et la solution de I'équation différentielle est de la forme :

x(t) = AeX1t + BeX2t 4+ x

ou A et B sont déterminées par les conditions initiales et ou X; et X, sont les racines réelles
négatives de I'équation caractéristique.
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Exemple : avec x,, = 0

T0=10s Q=0.3 x(0)=5 T0=10s x(0)=5 x'(0)=0
— x'(0)=0 5 ; — 0Q=0.1
6 x'(0)=5 Q=0.3
— x'(0)=-10 — Q=048
5 9
44 5]
= ©
2 2
= 39 x
2
2
14 H
0 04
6 é l‘l) ll5 Zb 2‘5 3‘[) 3‘5 4‘[) 0 10 20 30 40 50
t(ens) t(ens)

L’allure des courbes dépend des conditions initiales.

La durée du régime transitoire est d’autant plus courte que Q est grand.

Estimons cette durée dans le cas ot Q est petit devant 1.

: P : foa . 1 1
Les deux racines sont négatives : le premier terme décroit sur un temps typique — 7 et le second sur — P
1 2

Comme |Xi| > |Xz|, C’est le terme Be*2¢ qui décroit le plus lentement. En faisant un DL a l'ordre 1:
— _®(q_ —2402) ~ —20(1_1_-1202)~ -
X, = 2Q(1 J1-40%) ~ 2Q(1 1-240%) ~ - Qu,

On admet donc que la durée du régime transitoire lorsque le facteur de qualité est petit devant 1

. . 3
est voisine de —.
woQ

3.3 Cas A =0:Régime apériodique critique

1 . 1., : L . . L
A = wy? (@ — 4) =0siQ= > L'équation caractéristique admet une racine double réelle et négative :

= _%®_ _
X = 20 Wy
Dans ce cas la solution homogene de 1'équation différentielle est de la forme x;,(t) = (4 + Bt)e %ot

A et B sont fixées par les conditions initiales.

SiQ= %, le régime est apériodique critique et la solution de I'équation différentielle est de la
forme:
x(t) = (A+ Bt)e ot +x,

ou A et B sont déterminées par les conditions initiales.
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Exemple : avec x,, = 0

T0=10s Q=0.5 x(0)=5

74 — x(0)=0
x(0)=5
6 — x(0)=-5

% (ua)

T T T T T T T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t (en s)

i as ‘e . . 1 .
On peut poser un temps 1 caractéristique de 1'évolution de cette amplitude : ~ = Wy, la durée du

.- N . 3
régime transitoie (a 5%) est environ —
0

C'est le régime non oscillant qui permet un retour a I’équilibre le plus vite.

4. Bilan énergétique
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Applications

Application 1 : Clreuit LC

On constodére un condensateur tnitialement chargé sous une tension uc(0) branché en série avee

une bobine d’inductance L. On ferme Linterruptewr o t = 0. On néglige icl tout phénomene oe
dissipation d'énergie (absence de résistances).

i/

uy,

1) Appliquer La Lol des wmailles et en dédudre Véquation difféventielle ou 24 orolre vérifiée par Lo
tension ue.

d

2) Déterminer Les conditions initiales ue (0) et dtc (0).

2) Résowdre Léquation différentielle.
4) Quelle est la pulsation des oscillations ?
5) Exprimer L(t).




ONDES ET SIGNAUX - Signaux et composants électriques MP21
Chapitre 6 : Oscillateurs harmoniques

Application 2 : Btude énergétique du clreuit LC

Exprimer Uénergie totale stockée dans Le clircuit LC précédent o Linstant t. Commenter.

Application 3 : Clreuit RLC

Etabliv équation difféventielle vévifice par La tension ue dans le clrcuit RLC cl-dessous.

y, L O |ug




