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Le cours 

On a jusqu’à présent étudié des circuits linéaires électriques alimentés par une source continue ou en 

régime libre. On a vu que ces systèmes sont décrits par des équations différentielles linéaires dont : 

- La solution homogène décrit le caractère transitoire car elle tend rapidement vers 0 dans le cas 

d'un système stable. 

 

- La solution particulière correspond au régime permanent.  

 

Que se passe-t-il maintenant si on impose à un système une excitation sinusoïdale ? 

I. Régime sinusoïdal forcé d’un système 

1. Observations expérimentales 

Expérience : On observe la tension aux bornes du condensateur d’un circuit RC série alimenté par une 

source de tension sinusoïdale de fréquence réglable.  

 
Observations :  

 

- Un régime sinusoïdal de même fréquence que la source s’établit après un certain temps, il est d’abord 

transitoire puis permanent. 

- L’amplitude dépend de la fréquence de la source ainsi que le retard temporel entre la tension observée 

et la tension de la source. 
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2. Interprétation mathématique 

Si on alimente un circuit linéaire avec un GBF délivrant un signal variable, le circuit est décrit par une 

équation différentielle linéaire dont le second membre est une fonction du temps.  

La réponse d’un système linéaire à une excitation est la superposition de 2 termes : 
 
− La solution homogène sH(t) de l’équation différentielle, dépendant des CI. Elle correspond à 

un régime transitoire qui tend rapidement vers 0 pour un système stable et qui correspond à 
l’évolution du système en l’absence de sources.  

 
− La solution particulière sP(t) de l’équation différentielle, indépendante des CI mais dépendant 

du type d’excitation. 
 
Lorsque| sH |devient négligeable devant | sP |, le régime est permanent (ou établi) et s(t) ≈ sP(t). 
 
On parle alors de régime forcé. 

 

Si la source délivre un signal sinusoïdal, on finit par observer un régime permanent sinusoïdal de même 

fréquence que l’excitation.  

 
Le régime sinusoïdal forcé d’un circuit linéaire stable soumis à une excitation sinusoïdale est un 
régime permanent sinusoïdal de même pulsation que l’excitation qui s’établit après un régime 
transitoire. 

 

On se concentre dans la suite sur l'étude de cette solution particulière sinusoïdale. Pour cela, on 

utilisera la méthode des complexes. 

3. Description d’un signal sinusoïdal : rappels et compléments 

• Paramètres pour décrire la périodicité : 

 

- La période d’un signal périodique T est le plus petit intervalle de temps au bout duquel se 

reproduit le signal identique à lui-même : 𝑠(𝑡)  =  𝑠(𝑡 +  𝑇).  

- La fréquence f est le nombre de périodes par seconde, soit 𝑓  =  1/𝑇 exprimée en Hertz (Hz). 

- La pulsation 𝝎 = 𝟐𝝅𝒇 =
𝟐𝝅

𝑻
. 

 

• Valeur moyenne : 𝑺𝒎𝒐𝒚 = 〈𝒔(𝒕)〉 =
𝟏

𝑻
∫ 𝒔(𝒕) 𝒅𝒕

𝒕𝟎+𝑻

𝒕𝟎
 

• Amplitude : 𝑺𝒎  

• Valeur efficace : 𝑺𝒆𝒇𝒇 = √〈𝒔(𝒕)𝟐〉 = √
𝟏

𝑻
∫ 𝒔(𝒕)𝟐 𝒅𝒕

𝒕𝟎+𝑻

𝒕𝟎
 

Cas d’un signal sinusoïdal : 𝑺𝒆𝒇𝒇 =
𝑺𝒎

√𝟐
  (la valeur moyenne d’un fonction sinusoïdale étant ½) 
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• Déphasage entre deux signaux sinusoïdaux de même fréquence  

On observe un décalage (temporel) t entre le signal délivré par la source e(t) et le signal étudié s(t).  

 

 
On peut traduire ce décalage temporel en angle : le déphasage ().  

 

Soient 2 signaux sinusoïdaux de même fréquence. 

 

s1(t) = S1m cos(t + 1) et s2m(t) = S2m cos(t + 2). 

 

Le déphasage  du signal 2 par rapport au signal 1 est l’écart entre les phases instantanées et 

donc entre les phase à l’origine :  =  −  

 

Si t est le décalage temporel, le déphasage en radians est tel que  |∆𝝋| = 
𝟐𝝅

𝑻
|∆t| 

 

Si le signal 2 est en avance sur 1 :  est positif, si le signal 2 est en retard sur 1 :  est négatif. 

 

Un déphasage φ est bien sûr défini module 2π radians.  

Dans l’exemple ci-dessous, on peut en effet soit considérer que e(t) est en avance de t ou que s(t) est en 

avance de T- t. 

 
 

Si un signal s2 est en avance de plus d’une demie période sur un signal s1, le déphasage  est 

théoriquement supérieur à π. On choisit malgré tout de travailler entre − 𝛑 et + 𝛑. 

Le signal s(t) est en avance sur e(t) si « s(t) passe par son maximum avant e(t) », en choisissant de 

travailler entre − π  et + π,  on doit considérer le maximum de s(t) qui est le plus proche, 

temporellement parlant, du maximum de e(t) considéré.  

http://fr.wikipedia.org/wiki/D%C3%A9phasage
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Cas particuliers : 

 

- Si le décalage temporel est égal à un nombre entier de période : les signaux sont dits en phase. 

 

 
 

 

- Si le décalage temporel est égal à un nombre impair de demi période, les signaux sont dits    

opposition de phase. 

 

 

- Si le décalage temporel est égal à 
𝝅

𝟐
[𝝅], les signaux sont dits en quadrature de phase. Lorsqu’un 

signal est extrêmal l’autre est nul. 

 

 

✍ AP 1 
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II. Détermination de la solution particulière : méthode des complexes 

1. Rappels sur les complexes 

  Voir OM5. 

2. Représentation complexe d’un signal 

Pour faciliter la description des circuits en régime sinusoïdal forcé, on associe aux signaux réels 

des signaux complexes tels qu’à s(t) = Sm cos(t + ), on associe le signal complexe : 

𝒔(𝒕) = 𝑺𝒎 𝒆𝒋(𝝎𝒕+𝝋)(avec j2 = -1 ). 

On peut retrouver le signal réel grâce aux propriétés de l'exponentielle complexe : le signal réel est la 

partie réelle du signal complexe : 𝑠(𝑡) = 𝑅𝑒 (𝑠(𝑡))  

- L’amplitude est le module du signal complexe : 𝑺𝒎 = |𝒔(𝒕)| 

- La phase instantanée est l’argument du signal complexe : 𝝎𝒕 + 𝝋 = 𝒂𝒓𝒈(𝒔(𝒕)) 

Pour s’affranchir de la partie temporelle, ejωt , commune à l’excitation et à la réponse, on définit 

l’amplitude complexe d’un signal : 𝐒 = 𝐒𝐦 𝐞𝐣𝛗. L’amplitude est le module de l’amplitude complexe et la 

phase à l’origine son l’argument : 

𝐒𝐦 = |𝐒(𝐭)| 𝐞𝐭 𝛗 = 𝐚𝐫𝐠(𝐒) 

Le déphasage entre 2 signaux de même fréquence est 𝝋𝟐 − 𝝋𝟏 = 𝒂𝒓𝒈 (𝒔𝟐(𝒕)) − 𝒂𝒓𝒈 (𝒔𝟏(𝒕)). 

3. Intérêt des complexes dans l’étude d’un régime sinusoïdal forcé 

Pour un signal s(t) auquel on associe le signal complexe 𝑠(𝑡) = 𝑆𝑚 𝑒𝑗(𝜔𝑡+𝜑) : 

- 
𝑑𝑠(𝑡)

𝑑𝑡
= 𝑗𝜔 𝑆𝑚 𝑒𝑗(𝜔𝑡+𝜑) =  𝑗𝜔 𝑠(𝑡) 

- ∫ 𝑠(𝑡)𝑑𝑡 =  
1

𝑗𝜔
 𝑆𝑚 𝑒𝑗(𝜔𝑡+𝜑) =

 𝑠(𝑡)

𝑗𝜔
 

 

- En notation complexe, dériver par rapport au temps revient à multiplier le signal complexe 

par j : 
𝒅𝒔(𝒕)

𝒅𝒕
=  𝒋𝝎 𝒔(𝒕). 

 

- En notation complexe, intégrer par rapport au temps revient à diviser le signal complexe par 

j : ∫ 𝒔(𝒕)𝒅𝒕 =
 𝒔(𝒕)

𝒋𝝎
 

Traiter les circuits à l'aide de la méthode complexe va permettre de transformer les équations 

différentielles les décrivant en équations algébriques dans le corps des complexes.  
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III. Etude d’un circuit électrique linéaire en régime sinusoïdal forcé 

1. Impédance complexe  

 
On associe aux signaux réels 𝑢(𝑡)  =  𝑈 𝑐𝑜𝑠(𝜔𝑡 + 𝜑𝑢) 𝑒𝑡 𝑖(𝑡)  =  𝐼 𝑐𝑜𝑠(𝜔𝑡 + 𝜑𝑖), les signaux complexes 

𝑈 𝑒𝑗(𝜔𝑡+𝜑𝑢) 𝑒𝑡 𝐼 𝑒𝑗(𝜔𝑡+𝜑𝑖) . 
 

On généralise la loi d'Ohm vue pour les résistances à tout type de dipôle linéaire : 
 

𝒖(𝒕) = 𝒁 𝒊(𝒕) où  𝒁 est l'impédance complexe du dipôle. 

𝑌 =  
1

𝑍
  est l’admittance complexe du dipôle. 

L’impédance d’un dipôle peut se mettre sous forme trigonométrique : 𝒁 =  |𝒁|𝒆𝒋𝝋 

Son module est tel que : |𝒁| =
𝑼

𝑰
 , il s’exprime en . 

Son argument est tel que : 𝒂𝒓𝒈(𝒁) =  𝝋𝒖 − 𝝋𝒊 est le déphasage de la tension u(t) aux bornes du 

dipôle par rapport au courant i(t) le traversant. 

2. Dipôles usuels 

2.1 Conducteur ohmique 

 

𝑢 = 𝑅 𝑖     

𝒁𝑹 = R 

La tension aux bornes de la résistance et le courant la traversant sont en phase. 

2.2 Bobine idéale 

 

𝑢 = 𝐿
𝑑𝑖

𝑑𝑡
= 𝑗𝐿𝜔 𝑖     

𝒁𝑳 = jL 

La tension aux bornes de la bobine est en avance de 
𝝅

𝟐
 sur le courant la traversant. 
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Comportements limites : 

- À très basse fréquence : | 𝒁𝑳| = 𝐋𝛚 → 𝟎 donc et la bobine se comporte comme un fil.  

- À très haute fréquence : | 𝒁𝑳| = 𝐋𝛚 → ∞ donc et la bobine se comporte comme un interrupteur 

ouvert. 

2.3 Condensateur idéal 

  

𝑖 = 𝐶
𝑑𝑢

𝑑𝑡
= 𝑗𝐶𝜔 𝑢 

𝒁𝑪 = 
𝟏

𝒋𝑪𝝎
 

La tension aux bornes du condensateur est en retard de 
𝝅

𝟐
 sur le courant la traversant. 

Comportements limites : 

- À très basse fréquence : | 𝒁𝑪| =
𝟏

𝑪𝝎
→ ∞ donc et la bobine se comporte comme un interrupteur 

ouvert. 

- À très haute fréquence : | 𝒁𝑪| =
𝟏

𝑪𝝎
→ 𝟎 donc et la bobine se comporte comme un fil. 

Les impédances d’un condensateur et d’une bobine dépendant de la pulsation, on peut comprendre alors 

que l’amplitude et le déphasage des grandeurs électriques vont également dépendre de la pulsation. 

3. Associations de dipôles et pont diviseurs 

La relation qui relie les tensions et intensités complexes aux bornes d’un dipôle est analogue à la loi 

d’Ohm. On peut donc appliquer les mêmes relations qu’avec les résistances. 

3.1 Association en série 

 

𝒁𝒆𝒒 = 𝒁𝟏 + 𝒁𝟐 

 

La tension aux bornes de l’impédance Z1 est 𝒖𝟏 = 𝐮
𝒁𝟏

𝒁𝟏+𝒁𝟐
. 

 

 

 



ONDES ET SIGNAUX – Signaux et composants électriques                                                                                             MP2I                                          

Chapitre 7 : Régime sinusoïdal forcé                                                           

9 

 

3.2 Association en parallèle 

 

𝟏

 𝒁𝒆𝒒
=

𝟏

 𝒁𝟏
+

𝟏

 𝒁𝟐
⟹ 𝒁𝒆𝒒 =

𝒁𝟏𝒁𝟐

 𝒁𝟏 + 𝒁𝟐

 

 

L’intensité traversant l’impédance Z1 est 𝒊𝟏 = 𝐢
𝒁𝟐

𝒁𝟏+𝒁𝟐
. 

✍ AP 2 

4. Lois de Kirchhoff en notation complexe  

Les lois de Kirchhoff restent valables en régime variable dans le cadre de l'ARQS.  

Dans le cas particulier du régime sinusoïdal forcé, on peut les écrire en notation complexe. 

L’écriture des lois de Kirchhoff en notation complexe évite d’avoir à écrire et résoudre des équations 

différentielles et nous permet de déterminer directement le signal complexe correspondant au régime 

permanent.  

5. Méthode générale  

Une fois le signal complexe déterminé, à partir de ponts diviseurs et/ou des lois de Kirchhoff, on peut 

déterminer facilement amplitude et déphasage.  

On utilisera pour cela le fait que :  

- L’amplitude est le module du signal complexe : 𝑺𝒎 = |𝒔(𝒕)|= |𝑺| 

 

- La phase à l’origine est l’argument de l’amplitude complexe : 𝝋 = 𝒂𝒓𝒈(𝑺) 

Exemple : étude du courant dans un circuit RL 

 

On note e et i les grandeurs complexes associées à la tension source e(t) = E cos(t) et au courant i(t) en 

régime forcé.  
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Avec les complexes, on peut écrire directement :  𝑍𝐿𝑖 + 𝑅𝑖 = 𝑒    ⟹       𝑅𝑖 +  𝑗𝐿𝜔𝑖 = 𝑒      ⟹      𝑖 = 
𝑒

𝑅+𝑗𝐿𝜔
 

On peut facilement en déduire l’amplitude de i(t) et le déphasage de i(t) par rapport à e(t) : 

-  𝐼 =  |𝑖| = |
𝑒

𝑅+𝑗𝐿𝜔
| =

𝐸

√𝑅2+(𝐿𝜔)2
  

- arg(𝑖)= 𝑎𝑟𝑔 (
𝑒

𝑅+𝑗𝐿𝜔
) ⇒ ∆𝜑𝑖/𝑒 = 𝜑 =  𝑎𝑟𝑔(𝑖) − 𝑎𝑟𝑔(𝑒) = −𝑎𝑟𝑔(𝑅 + 𝑗𝐿𝜔) = −𝑎𝑟𝑐𝑡𝑎𝑛 (

𝐿𝜔

𝑅
)  

𝑖(𝑡) =  
𝐸

√𝑅2+(𝐿𝜔)2
 cos(𝜔𝑡 +  𝜑) 

✍ AP 3 et 4 

IV. Réponse en courant du circuit RLC série 

Expérience : On observe la tension aux bornes de la résistance d’un circuit RLC série alimenté par une 

source de tension sinusoïdale de fréquence réglable.  

 
Observations : L’amplitude dépend de la fréquence de la source et passe par un maximum pour une 

pulsation particulière. A ce moment-là, la tension observée est en phase avec la tension de la source. 

1. Détermination du régime sinusoïdal forcé 

On étudie le circuit suivant : 

 

On associe aux signaux réels e(t) = E cos(t) et i(t) = I cos(t + i), les signaux complexes 
𝐸 𝑒𝑗𝜔𝑡  𝑒𝑡 𝐼 𝑒𝑗(𝜔𝑡+𝜑𝑖) . 
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1.1 Intensité complexe 

On pose 𝜔0 = √
1

𝐿𝐶
  la pulsation propre et Q = 

𝐿𝜔0

𝑅
=

1

𝑅
√

𝐿

𝐶
  le facteur de qualité du circuit RLC (cf. chapitre 

6). 

𝒊 =
𝒆

𝑹 + 𝒋 (𝑳𝝎 −
𝟏

𝑪𝝎)
=

𝒆

𝑹 (𝟏 + 𝒋𝑸 (𝒙 −
𝟏
𝒙))

 

1.2 Amplitude de l’intensité  

𝐼𝑚 = |𝑖| =
𝑈

𝑅√(1 + 𝑄2 (𝑥 −
1
𝑥

)
2

)

 

1.3 Déphasage de l’intensité par rapport à la tension  

La partie réelle est positive. 

𝜑 = −𝑎𝑟𝑐𝑡𝑎𝑛 (𝑄 (𝑥 −
1

𝑥
)) 

2. Résonance en intensité 

Étudions comment l’amplitude se comporte avec la fréquence. 
 
Pour cela, on trace I(x). On prend E = 4 V, R = 100  et Q = 2. 
 

 
 
- L’amplitude tend vers 0 lorsque ω → 0 ou ω → +∞. Ceci s’explique par le fait que dans chaque cas, 

soit la bobine soit le condensateur se comporte comme un interrupteur ouvert. 
 

- Elle est maximale pour x = 1, c’est-à-dire quand le dénominateur devient minimal, autrement dit 
pour la pulsation pour lequel le terme entre parenthèses s’annule soit : 𝜔 =  𝜔0 

 

L’intensité maximale Imax vaut Imax = 
𝐸

𝑅
. Tout se passe comme si l’inductance et le condensateur étaient 

absents à la résonance (ZC + ZL =0). 
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L’amplitude de l’intensité dans le circuit est maximale pour une pulsation dite de résonance égale 
à la pulsation propre du circuit.  
 
On dit qu’il y a résonance. 
 
Ce phénomène est observable lorsqu’on étudie un oscillateur en régime sinusoïdal forcé. 

 
Étudions maintenant comment le déphasage se comporte avec la fréquence. 
 
Pour cela, on trace (x). On prend E = 4 V, R = 100  et Q = 2. 
 

 
 

- Le déphasage tend vers 
𝜋

2
 lorsque ω → 0 : comportement capacitif. 

- Le déphasage tend vers −
𝜋

2
 lorsque ω → ∞ : comportement inductif. 

- Le déphasage est nul pour x = 1, soit  pour 𝜔 =  𝜔0 : comportement résistif. 

3. Influence du facteur de qualité 

On trace 
𝐼

𝐼𝑚𝑎𝑥
(𝑥)𝑒𝑡 𝜑(𝑥) pour des valeurs de Q différentes. 

 

Plus le facteur de qualité est grand, la résonance est aigue (pic étroit). 

 
On s’intéresse au domaine de fréquence dans lequel l’amplitude de l’intensité reste importante, c’est-à-

dire proche de son maximum Imax = 
𝐸

𝑅
 

 
Le critère usuellement retenu pour quantifier une bande passante est de considérer la zone de 

fréquences pour laquelle l’amplitude reste supérieure à l’amplitude maximale :  𝑰(𝝎) ≥
𝑰𝒎𝒂𝒙

√𝟐
 . 
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Les pulsations  1,2 limitant la bande passante pour la résonance en intensité sont telles que : 

𝑰(𝝎𝟏,𝟐) =
𝑰𝒎𝒂𝒙

√𝟐
 

La bande passante est : ∆𝝎 = |𝝎𝟐 − 𝝎𝟏| 
 
On choisit E = 4 V, R = 100 Ω, L = 9,0 mH et C = 0,30 μF.  
 

 
On appelle acuité de résonance le rapport 

𝜔0

∆𝜔
.  

 

Le facteur de qualité est égal à l’acuité de résonance : 
 

𝑸 =  
𝝎𝟎

∆𝝎
 

 Voir démo en TD. 

V. Résonance aux bornes du condensateur dans le circuit RLC série 

On étudie la tension aux bornes du condensateur dans le circuit RLC série. 

 

1. Expression de la tension  

On détermine la tension complexe à l’aide d’un pont diviseur de tension. 
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1.1 Tension complexe 

𝑢𝐶 =
𝑒  

1
𝑗𝐶𝜔

𝑅 + 𝑗 (𝐿𝜔 −
1

𝐶𝜔
)

=
𝑒

𝑗𝑅𝐶𝜔 + (1 − 𝐿𝐶𝜔2)
=

𝑒

(1 − 𝑥2) + 𝑗
𝑥
𝑄

 

1.2 Amplitude   

𝑈𝑐𝑚 = |𝑢𝑐| =
𝐸

√((
𝑥

𝑄
)

2
+(1−𝑥2)2)

     

L’amplitude tend vers E lorsque ω → 0 et vers 0 quand ω → +∞. 
 

1.3 Déphasage par rapport à la tension d’entrée  

La partie réelle peut être positive ou négative selon la fréquence. 

✓ Soit on distingue 2 cas : 

 

 

✓ Soit on trouve une expression générale faisant intervenir un complexe de partie réelle positive : 

 = 𝑎𝑟𝑔(𝑢𝐶) − 𝑎𝑟𝑔(𝑒) = − 𝑎𝑟𝑔 ((1 − 𝑥2) + 𝑗
𝑥

𝑄
) = − 𝑎𝑟𝑔 (𝑗(−𝑗(1 − 𝑥2) +

𝑥

𝑄
) = −

𝜋

2
+ 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑄(1−𝑥2)

𝑥
) 

- Le déphasage tend vers 0 lorsque ω → 0. 
- Le déphasage tend vers −𝜋 lorsque ω → ∞. 

- Le déphasage égal à  −
𝜋

2
, soit  pour 𝜔 =  𝜔0 

2. Résonance en tension (ou surtension) 

On cherche l’existence d’un extremum pour la fonction 𝑓(𝑥) = (
𝑥

𝑄
)

2
+ (1 − 𝑥2)2. 

𝑓′(𝑥) =
2𝑥

𝑄2 + 2(1 − 𝑥2)(−2𝑥) = 2𝑥 (
1

𝑄2 − 2(1 − 𝑥2)) 

𝑓′(𝑥) = 0 ⟺ 𝑥 = 0 (𝑐𝑎𝑠 𝑑′𝑢𝑛 𝑟é𝑔𝑖𝑚𝑒 𝑐𝑜𝑛𝑡𝑖𝑛𝑢)𝑜𝑢 𝑥 =  √1 −
1

2𝑄2 

Cette dernière solution existe à condition que 1 −
1

2𝑄2 > 0 c’et à dire si 𝑄 >
1

√2
. On admet qu’il s’agit d’un 

minimum et donc que 𝑈𝑐𝑚 est maximale. 
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Amplitude Ucm maximale pour 𝜔𝑟 = 𝜔0√1 −
1

2𝑄2 ≤ 𝜔0, la pulsation de résonance est différente de la 

pulsation propre du circuit et dépend de R. 
 

Condition d’existence : 𝑸 >
𝟏

√𝟐
 

 

Remarque : Si Q>>1, 𝜔𝑟 ≈ 𝜔0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



ONDES ET SIGNAUX – Signaux et composants électriques                                                                                             MP2I                                          

Chapitre 7 : Régime sinusoïdal forcé                                                           

16 

 

Applications 

Application 1 : Etude de deux signaux sinusoïdaux 

 

 
 

Mesurer le déphasage (supposé compris entre − 𝜋 et + 𝜋) du signal de plus faible amplitude par rapport au 

signal de plus grande amplitude. 

 

 

 

 

 

 

 

 

 

 

Application 2 : Impédance équivalente 

 

Exprimer les impédances équivalentes des associations suivantes : 
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Application 3 : Détermination d’une tension 

 

Le circuit suivant est alimenté par un générateur délivrant une tension sinusoïdale : e(t) = E 

cos(t). Exprimer : 

- La grandeur électrique complexe u. 

- Son amplitude.  

- Son déphasage par rapport à la grandeur source. 

 

 

 

 

 

 

 

 

 

 

 

Application 4 : Détermination d’un courant 

 

Le circuit suivant est alimenté par un générateur délivrant un courant sinusoïdal : (t) = I 

cos(t). Exprimer : 

- La grandeur électrique complexe i. 

- Son amplitude.  

- Son déphasage par rapport à la grandeur source. 

 

 

 

 

 

 

 

 


