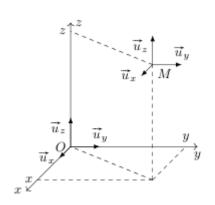


OM 7 – Systèmes de coordonnées

I. Coordonnées cartésiennes

Les vecteurs de base sont les vecteurs unitaires \vec{u}_x , \vec{u}_y , \vec{u}_z dirigeant les 3 axes du trièdre (Oxyz).

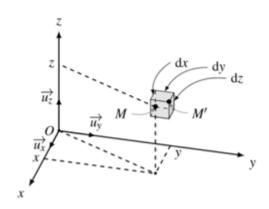
Les coordonnées cartésiennes (x, y, z) d'un point M sont les valeurs algébriques mesurées par rapport au point O des projections orthogonales de M respectivement sur les axes (Ox), (Oy) et (Oz):



- $x \text{ est l'abscisse de M} : x \in]-\infty; +\infty[$
- y est l'ordonnée de M : $y \in]-\infty$; $+\infty[$
- z est la cote de M : $z \in]-\infty$; $+\infty[$

Vecteur position :
$$\overrightarrow{OM}(t) = x(t) \vec{u}_x + y(t) \vec{u}_y + z(t) \vec{u}_z$$

Soit un point M' tel que x' = x + dx, y' = y + dy et z' = z + dz.



Vecteur déplacement élémentaire : $\overrightarrow{MM'} = d \overrightarrow{OM} = dx \overrightarrow{u}_x + dy \overrightarrow{u}_y + dz \overrightarrow{u}_z$

Surfaces élémentaires : $dS_{y,z} = dy.dz$ $dS_{x,z} = dx.dz$ $dS_{x,y} = dx.dy$

Volume élémentaire : $dV = dx \cdot dy \cdot dz$

II. Coordonnées cylindriques

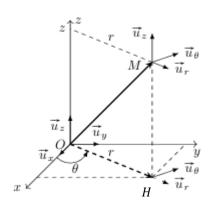
H est le projeté orthogonal de M dans le plan (Oxy).

Les **coordonnées cylindriques** (r, θ, z) d'un point M sont telles que :

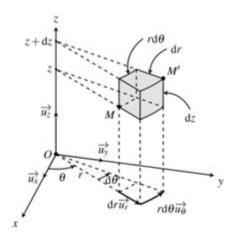
- r = OH; $x \in [0; +\infty[$
- θ angle orienté entre l'axe 0x et \overrightarrow{OH} ; $0 \le \theta \le 2\pi$,
- $-\infty < z < +\infty$.

Les **vecteurs de base** sont les vecteurs unitaires \vec{u}_r , \vec{u}_{θ} , \vec{u}_z :

- $\overrightarrow{u_r}$ est le vecteur unitaire qui dirige \overrightarrow{OH} ,
- $\overrightarrow{u_{\theta}}$ est le vecteur unitaire appartenant au plan (Oxy), perpendiculaire à $\overrightarrow{u_r}$, dans le sens des θ croissants.
- $\overrightarrow{u_z}$ est le vecteur unitaire qui dirige l'axe 0z



Vecteur position : $\overrightarrow{OM}(t) = r(t) \overrightarrow{u}_r + z(t) \overrightarrow{u}_z$



Vecteur déplacement élémentaire est : $\overrightarrow{MM'} = d\overrightarrow{OM} = dr \overrightarrow{u}_r + r d\theta \overrightarrow{u}_\theta + dz \overrightarrow{u}_z$

Surfaces élémentaires : $dS_{r,\theta} = dr dz$ $dS_{r,\theta} = r dr d\theta$ $dS_{\theta,z} = r d\theta dz$

Volume élémentaire : $dV = r dr d\theta dz$

III. Coordonnées sphériques

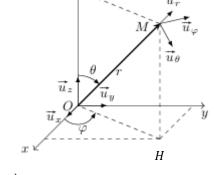
H est le projeté orthogonal de M dans le plan (Oxy).

Les **coordonnées sphérique** (r, θ, φ) d'un point M sont telles que :

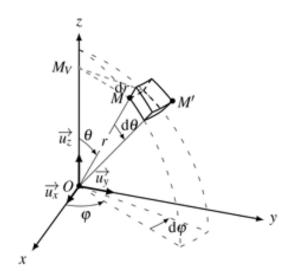
- r = OM; $r \in [0; +\infty[$
- θ angle orienté entre l'axe 0z et \overrightarrow{OM} ; $0 \le \theta \le \pi$,
- $\varphi = \text{angle orient\'e entre l'axe } 0x \text{ et } \overrightarrow{OH}, \ 0 \le \varphi \le 2\pi.$

Les **vecteurs de base** sont les vecteurs unitaires \vec{u}_r , \vec{u}_θ , \vec{u}_ω :

- \vec{u}_r est le vecteur unitaire qui dirige \overrightarrow{OM} ,
- $\overrightarrow{u_{\theta}}$ est le vecteur unitaire appartenant au plan formé par l'axe Oz et \overrightarrow{OM} , perpendiculaire à $\overrightarrow{e_r}$, dans le sens des θ croissants.
- $\overrightarrow{u_{\varphi}}$ est le vecteur unitaire perpendiculaire à $\overrightarrow{e_r}$ et $\overrightarrow{e_{\theta}}$, dans le sens des φ croissants.



Vecteur position : $\overrightarrow{OM}(t) = r(t) \overrightarrow{u}_r$



Vecteur déplacement élémentaire : $\overrightarrow{MM'} = d \overrightarrow{OM} = dr \overrightarrow{u}_r + r d\theta \overrightarrow{u}_\theta + r \sin\theta d\phi \overrightarrow{u}_\phi$

Surfaces élémentaires :

 $dS_{r,\theta} = r^2 \sin\theta \ dr \ d\theta \quad dS_{r,\varphi} = r \sin\theta \ dr \ d\varphi \quad dS_{r,\theta} = r \ dr \ d\theta$

Volume élémentaire : $dV = r^2 \sin\theta dr d\theta d\phi$