

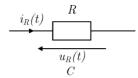
FM 8 – Etude d'un circuit du 2nd ordre

Un circuit du 2nd ordre contient :

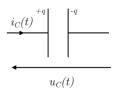
- Un nombre quelconque de résistances
- Un ou plusieurs condensateurs et/ou une ou plusieurs bobines

I. Mise en équation

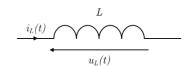
- 1. Redessiner le circuit.
- 2. Flécher et nommer tous les courants et toutes les tensions en respectant les notations imposées par l'énoncé s'il y en a.
- 3. Ecrire les relations décrivant les dipôles et le circuit :
 - Pour une résistance en convention récepteur : $u_R(t) = R i(t)$



- Pour un condensateur idéal en convention récepteur : $i_{c}(t) = C \, rac{du_{c}(t)}{dt}$



- Pour une bobine idéale en convention récepteur : $u_L(t) = L \, rac{di_L(t)}{dt}$
- Les lois des mailles
- Les lois des nœuds



- **4.** Choisir une équation qui servira de point de départ au raisonnement : très souvent, une loi des mailles ou une loi des nœuds qui fait apparaître explicitement la grandeur dont on cherche l'évolution temporelle et la source éventuellement présente.
- 5. Dans l'équation retenue, modifier à l'aide des relations listées à l'étape 3 les termes non constants qui ne contiennent pas la grandeur recherchée pour les exprimer en fonction de celle-ci ou de sa dérivée première.
 - Dans le cas où la relation entre la grandeur recherchée et la variable fait intervenir la dérivée de la variable, il faut dériver toute l'équation.
- 6. Si la grandeur recherchée est s(t), il faut aboutir à une équation de la forme :

$$\frac{d^2s}{dt^2} + \frac{\omega_0}{Q}\frac{ds}{dt} + {\omega_0}^2s = 2^{nd} membre$$

Où ω_0 et Q sont respectivement la pulsation propre et le facteur de qualité du circuit, à exprimer en fonction des paramètres du circuits (valeurs des différentes résistances, capacités et inductances) en identifiant l'équation différentielle établie avec la forme canonique.

II. Résolution de l'équation différentielle

La solution générale est $s(t) = s_H(t) + s_P(t)$ avec :

- $s_H(t)$: solution générale de l'équation homogène (équation sans second membre)
- $s_p(t)$: solution particulière de l'équation avec second membre.

1. Solution homogène

- Equation homogène type : $\frac{d^2s}{dt^2} + \frac{\omega_0}{Q} \frac{ds}{dt} + {\omega_0}^2 s = 0$
- Equation caractéristique : $X^2 + \frac{\omega_0}{Q}X + {\omega_0}^2 = 0$ dont le discriminant est $\Delta = {\omega_0}^2 \left(\frac{1}{Q^2} 4\right)$

Le type de solution dépend du signe du discriminant.

Régime pseudo périodique Oscillations amorties	Régime critique Pas d'oscillations	Régime apériodique Pas d'oscillations
$\Delta < 0, Q > \frac{1}{2}$	$\Delta = 0, Q = \frac{1}{2}$	$\Delta > 0$, $Q < \frac{1}{2}$
2 racines complexes conjuguées	1 racines réelle double	2 racines réelles
$X_{1,2} = \frac{-\omega_0}{2Q} \pm j \frac{\sqrt{ \Delta }}{2}$	$X_{1,2} = -\omega_0$	$X_{1,2} = \frac{-\omega_0}{2Q} \pm \frac{\sqrt{\Delta}}{2}$
$s_H(t) = e^{-rac{\omega_0}{2Q}t}[A\cos(\Omega t) + B\sin(\Omega t)]$ avec $\Omega = rac{\sqrt{ \Delta }}{2}$ la pseudo pulsation Il s'agit d'une fonction oscillante modulée par une enveloppe exponentielle décroissante.	$s_H(t) = (A + Bt)e^{-\omega_0 t}$	$s_H(t) = Ae^{X_1t} + Be^{X_2t}$

Quel que soit le régime, la fonction tend vers 0 quand t tend vers l'infini, elle représente le caractère transitoire de l'évolution temporelle.

2. Solution particulière et régime permanent

En présence de sources continues, il s'agit d'une constante, elle correspond donc au régime permanent :

$$s_P = \frac{2^{nd}membre}{{\omega_0}^2}$$

- - $\dot{\phi}$ On peut donc aussi la déterminer grâce à **l'étude du régime permanent du circuit s_P=s_\infty.**
- 1. Reproduire le circuit électrique une fois le nouveau régime permanent atteint en remplaçant les condensateurs par un interrupteur ouvert et les bobines par un fil.
- 2. Écrire que les tensions aux bornes des fils et les intensités à travers les interrupteurs ouverts sont nulles.
- 3. Appliquer les lois des nœuds, les lois des mailles et les relations intensité-tension pour déterminer les autres grandeurs électriques.

3. Détermination de la constante et conditions initiales

On détermine la constante d'intégration A et B à l'aide des conditions initiales s(0) et $\frac{ds}{dt}(0)$.

Pour cela:

- 1. Déterminer les valeurs des intensités traversant les bobines et les tensions aux bornes des condensateurs AVANT la fermeture de l'interrupteur (t = 0 -).
- 2. Utiliser la continuité de la tension aux bornes du condensateur (ou de sa charge) et de l'intensité du courant à travers une bobine, pour déterminer ces valeurs JUSTE APRÈS la fermeture de l'interrupteur (t=0+).
- 3. Les autres grandeurs électriques à t=0+ se déterminent en appliquant les relations intensité/tension des dipôles et les lois des mailles et des nœuds à t=0+.
- 4. On en déduit les valeurs de s(0+) et $\frac{ds}{dt}(0+)$.