Simulation d'une résistance par capacitée commutée

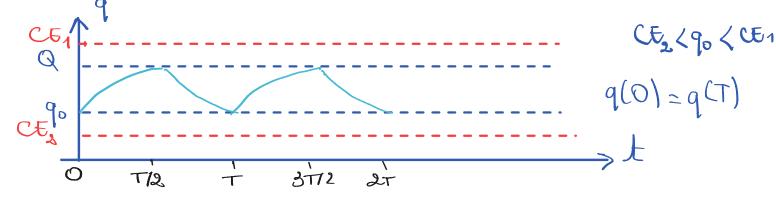
2° phose:
$$\frac{1}{2} \le L \le T$$
 continuité de u et donc de q:

 $q_{1}[I] = q_{1}[I] = (q_{0} - CE_{1}) \exp(-cd) + CE_{1}$

ve $f_{1}[I] = q_{2}[I] = (q_{0} - CE_{1}) \exp(-cd) + CE_{1}$

De la même façon, en trouve:

 $q(t) = A \exp(-\frac{t}{5}) + CE_2$ $q(t) = Q - CE_2 | \exp(x) \exp(-\frac{t}{5}) + CE_2$



2)

Durant la 1^{ea} phone: C re change, so change varie à nouveau de $Q-q_0$.

Durant la 2^a phone: C re déchange, so change varie à nouveau de $Q-q_0$.

Seu 1 période, une charge 0-q, a donc trousité entre le générateur En et le générateur E, par l'intermédiaire du condensateur qui retrouve sa charge initiale qo.

 $I = \frac{Q - q_0}{T}$

3)

d>>1: le a le temps d'attaindre Es devant la 1ère phose et Es durant la 2°.

 $E_{1} \uparrow \qquad \qquad E_{2} \downarrow \qquad \qquad E_{1} - E_{2} \downarrow \qquad \qquad E_{2} \downarrow \qquad \qquad E_{3} \downarrow \qquad \qquad E_{4} \downarrow \qquad \qquad E_{5} - E_{2} \downarrow \qquad \qquad E_{5} - E_{5} - E_{5} \downarrow \qquad \qquad E_{5} - E_{5} - E_{5} \downarrow \qquad \qquad E_{5} - E_{5} \rightarrow E_{5} \rightarrow E_{5} \rightarrow E_{5} \rightarrow E_{5} \rightarrow$

pour avoir $I = \frac{C}{T}(E_1 - E_2)$: $T = \frac{T}{C}$