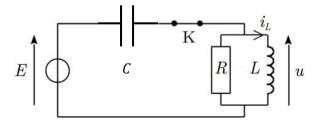

Exercice 7 : Mise en série d'une bobine et d'un condensateur réels

✓ Circuit du 2nd ordre à 2 mailles

On considère le montage ci-dessous modélisant l'association série d'une bobine réelle et d'un condensateur réel. On ferme l'interrupteur à t=0, le condensateur étant initialement déchargé.

On pose
$$\tau = \frac{L}{r} = RC$$


- 1) Déterminer l'équation différentielle vérifiée par i(t).
- 2) Résoudre. Son expression pour $t \to \infty$ est-elle cohérente ?
- 3) Tracer l'allure de i(t).
- 4) Pour L et C fixées, on considère la cas $r \to 0$. Déterminer, à partir de l'expression déjà établie, la nouvelle expression de i(t). Commenter. Ce résultat était-il prévisible ?

Exercice 8 : Etude d'un circuit à 2 mailles

✓ Circuit du 2nd ordre à 2 mailles

On considère le montage ci-dessous. On ferme l'interrupteur à t=0, le condensateur étant initialement déchargé. Avant la fermeture de l'interrupteur, aucun courant ne circule dans le circuit.

On pose $\tau = RC$ et $\omega_0 = \frac{1}{\sqrt{LC}}$

- 1) Déterminer l'équation différentielle vérifiée par u(t).
- 2) Résoudre dans le cas où $\omega_0 > \frac{1}{2\tau}$.