

TP 9 - Impédance d'une bobine

OBJECTIFS : Déterminer l'impédance complexe d'une bobine réelle

Ce qu'il faut savoir et savoir faire

- → Mesurer une fréquence
- → Mesurer une résistance ou une impédance
- → Mesurer une tension
- → Mesurer une intensité
- → Observer et mesurer une tension à l'oscilloscope
- → Observer un courant à l'oscilloscope
- → Elaborer un signal électrique à l'aide d'un GBF
- → Mettre en œuvre un dispositif expérimental autour du phénomène de résonance

Matériel:

- GBF de résistance interne $r = 50 \Omega$
- Boîte de résistances à décade
- Boîte de capacités à décade
- Bobine réelle (L,r_L) (valeurs de L et r_L à déterminer)
- Oscilloscope numérique et système d'acquisition
- 2 multimètres

Fiches utiles: FT7, FT8, FT9, ON2

Rappel du cours :

Modélisation d'une bobine réelle : Une bobine réelle est équivalent à basse fréquence e à une inductance L en série avec une résistance r :

bobine réelle (basse fréquence) $i \qquad \qquad L \qquad r$

Impédance d'une bobine idéale : $Z_L = jL\omega$

I. Mesure volt-ampèremétrique

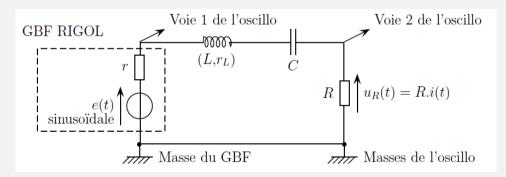
 \rightarrow Mesurer à l'aide d'un ohmmètre la résistance interne r_L de la bobine.

La bobine est alimentée par un GBF de résistance interne de r = 50 Ω délivrant une tension sinusoïdale e(t) d'amplitude 5V et de fréquence f \simeq 1 kHz.

→ Mesurer la tension efficace aux bornes de la bobine et l'intensité efficace du courant la traversant.

Travaux Pratiques 9 : Impédance d'une bobine

- **Q1.** Exprimer l'impédance complexe <u>Z</u> de la bobine réelle.
- **Q2.** En déduire son module.
- **Q3.** Exprimer le module de \underline{Z} en fonction des mesures effectuées.
- **Q4.** En déduire la valeur de l'inductance.
- **Q5.** Evaluer l'incertitude sur la mesure par la méthode de Monte Carlo.


II. Exploitation d'un oscillogramme

- ightarrow Réaliser un circuit série (R, L) alimenté par un GBF délivrant une tension sinusoïdale e(t) d'amplitude 4V et de fréquence f $\simeq 1$ kHz. On prendra R = 100 Ω .
- → Visualiser les tensions aux bornes du GBF et de la résistance R.
- → Mesurer l'amplitude de la tension aux bornes de R et le déphasage entre les deux tensions observées.
- **Q6.** Déduire de vos mesures les valeurs de r_L et L.

III. Exploitation du phénomène de résonance dans un circuit RLC série

Le circuit RLC série alimenté par un GBF délivrant une tension sinusoïdale e(t) d'amplitude 5V et de fréquence $f \approx 1$ kHz au départ. On prendra R = 200 Ω et C = 50 nF.

→ Réaliser le montage suivant :

- → Visualiser les tensions aux bornes du GBF et de la résistance R.
- → Faire varier la fréquence et observer le phénomène de résonance en intensité.
- → Mesurer la fréquence de résonance ainsi que l'amplitude de la tension aux bornes de R à cette fréquence.
- **Q7.** Exprimer l'impédance du circuit.
- **Q8.** Rappeler l'expression littérale de la fréquence de résonance en intensité dans un circuit RLC série.
- **Q9.** Déduire des mesures les valeurs de la résistance interne r₁ et de l'inductance L.
- **Q10.** Proposer une autre méthode permettant de mesurer r_L et L.